Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39118393

RESUMO

The study aims to assess the impact of oven-drying and decontamination on crude protein concentration and in vitro crude protein digestibility of yellow mealworms. Two kilograms of 12-wk-old mealworm larvae were subjected to freezing prior to the drying process. Approximately 1.5 kg of mealworm larvae were divided into 3 groups and exposed to oven-drying at temperatures of 50 °C for 36 h, 60 °C, and 70 °C for 24 h each. At intervals of 2 h, sets of 3 replicates were withdrawn to record water loss. Consistent weight stabilization was observed at 36 h for 50 °C (T50), 18 h for 60 °C (T60), and 14 h for 70 °C (T70). The remaining 0.5 kg of mealworm larvae was divided and dried under treatments T50, T60, and T70. Each treatment was then split into 2 portions, with one portion subjected to 90 °C for 15 min (denoted as T50-90, T60-90, T70-90) to eliminate microbial contamination. The 6 treatments were then used to determine concentrations of dry matter, crude ash, crude protein, pre-caecal protein digestibility, and dry matter residues after neutral detergent fiber, acid detergent fiber, and acid detergent lignin treatments. No interaction was observed between drying and decontamination treatments (P > 0.17). Pre-caecal crude protein digestibility increased with decreasing temperature (T50: 58% crude protein; T60: 51% crude protein; T70: 50% crude protein). Therefore, lower temperatures for longer times preserve crude protein digestibility. These findings are crucial for understanding how drying temperature and time impact protein bioavailability.


Assuntos
Digestão , Larva , Tenebrio , Animais , Tenebrio/química , Tenebrio/metabolismo , Larva/crescimento & desenvolvimento , Dessecação , Ração Animal/análise , Descontaminação/métodos , Proteínas Alimentares/metabolismo , Proteínas Alimentares/análise , Proteínas de Insetos/metabolismo , Temperatura Alta
2.
Food Res Int ; 191: 114728, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059922

RESUMO

With the increasing need to promote healthy and sustainable diets, seaweeds emerge as an environmentally friendly food source, offering a promising alternative for food production. The aim of this study was to characterize the brown seaweed Sargassum filipendula from the coast of São Paulo, Brazil, regarding its nutritional and techno-functional properties using two dehydration methods, oven drying and lyophilized. A commercial dried sample was used as a control. Analyses of proximate composition, mineral determination, amino acid determination, antioxidant capacity, pH, color, scanning electron microscopy, X-ray diffraction, thermal properties, Fourier-transform infrared spectroscopy, and techno-functional properties were performed. Seaweed flours showed significant differences in physicochemical composition, with dietary fiber content of seaweed flours exceeding 70 %. Glutamic and aspartic acids were the most abundant amino acids, with contents of 88.56 and 56.88 mg/g of protein in Sargassum oven drying. Both for antioxidant potential and bioactive compounds, Sargassum lyophilized flours showed the highest levels of compounds. Sargassum lyophilized exhibited lighter color compared to Sargassum oven drying and Sargassum commercial. Emulsion formation, foam formation capacity and stability were higher in Sargassum lyophilized, as well as water and oil absorption. The results suggest that seaweeds can be used to formulate a wide variety of food products, such as sausages, bread, cakes, soups, and sauces.


Assuntos
Antioxidantes , Liofilização , Valor Nutritivo , Sargassum , Alga Marinha , Sargassum/química , Antioxidantes/análise , Alga Marinha/química , Fibras na Dieta/análise , Brasil , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Aminoácidos/análise , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Dessecação/métodos
3.
Heliyon ; 10(13): e33544, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040403

RESUMO

AÒ«ai fruit is characterized by the properties of its bioactive compounds; however, this fruit is highly perishable and its compounds are sensitive when exposed to non-optimal environmental factors. Therefore, the objective of this study was to encapsulate the fruit pulp by spray drying to improve the nutritional value and extend the shelf life of the products derived from acai fruit. Maltodextrin was used as a wall material and the process was optimized to obtain the desirable values of the response variables. For this, a central compound design (CCD) was developed to determine the influence of temperature (110-170 °C) and the wall material proportion (5-15 %) on dependent variables: the retention of ascorbic acid, moisture percentage, hygroscopicity, solubility, water activity, and yield. Furthermore, the effects of spray drying on bioactive compounds (AA, TPC, TFC, TA, TCC, GA, CT, and QC) and antioxidant activity (ABTS, DPPH, and ORAC) were evaluated. The maximum design temperature (170 °C) and wall material proportion (15 %) significantly influenced the response variables where encapsulation was applied, with high ascorbic acid retention (96.886 %), low moisture (0.303 %), low hygroscopicity (7.279 g/100 g), low level of water activity (0.255), a water solubility index of 23.206 %, and a high yield of 70.285 %. The bioactive compounds analyzed and the antioxidant capacity presented significant retention values for AA (96.86 %), TPC (65.13 %), TFC (82.09 %), TA (62.46 %), TCC (7.28 %), GA (35.02 %), CT (49.03 %), QC (37.57 %), ABTS (81.24 %), DPPH (75.11 %), and ORAC (15.68 %). Therefore, it is concluded that the powder obtained under these conditions has desirable physical properties, and the drying process preserved a notable retention of bioactive compounds and their antioxidant activities.

4.
Int J Biol Macromol ; 277(Pt 1): 133754, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084984

RESUMO

Hibiscus extract exhibits considerable antioxidant activity and a high anthocyanin content, which suggesting potential health benefits. However, these compounds are highly susceptible to environmental factors. The aim of this study was to establish the optimal conditions for the encapsulation of Hibiscus sabdariffa extract (HSE) using mixed porous maize starch-gum Arabic to enhance the stability of bioactive compounds under accelerated aging conditions. Response surface methodology (RSM) was used to optimize microencapsulation conditions through spray drying. The optimal conditions for microencapsulation of HSE by RSM were determined to be 126 °C at the inlet temperature (IT) and 8.5 % at the total solid content (TSC). Using these conditions, the amount of bioactive compounds in optimized microcapsules (OMs) was 2368 mg GAE/100 g, 694 mg QE/100 g, and 930 mg EC3G/100 g, of phenolic compounds, flavonoids, and anthocyanin, respectively. The release rate of anthocyanins during in vitro digestion was more effectively regulated in the OM sample, which retained up to 40 % of anthocyanins compared with 10 % in the HSE. The experimental values in this study exhibit high assertiveness, which renders the optimization model technologically and financially viable for the encapsulation of bioactive compounds with potential use in the food and pharmaceutical industries.


Assuntos
Antocianinas , Composição de Medicamentos , Goma Arábica , Hibiscus , Extratos Vegetais , Amido , Hibiscus/química , Amido/química , Goma Arábica/química , Extratos Vegetais/química , Porosidade , Antocianinas/química , Cápsulas , Antioxidantes/química , Antioxidantes/farmacologia , Trato Gastrointestinal/metabolismo , Estabilidade de Medicamentos
5.
Int J Biol Macromol ; 274(Pt 1): 133039, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866285

RESUMO

Carvacrol has demonstrated antioxidant activity; however, its high volatility and low water solubility limit its direct application in food matrices. Then, an effective encapsulation system is required to protect it. This study aimed to design and characterize a carvacrol-based additive encapsulated in a spray-dried multilayer emulsion based on chitosan/sodium alginate/maltodextrin. Spray-drying temperature of 120 °C and 3 %(w/w) maltodextrin content maximized both encapsulation efficiency (~97 %) and loading capacity (~53 %). The powder's antioxidant properties were evaluated in two food simulant media: water (SiW) and water-ethanol (SiD). The highest antioxidant activity was observed in SiW for both ABTS•+ (8.2 ± 0.3mgEAG/g) and FRAP (4.1 ± 0.2mgEAG/g) methods because of the reduced release of carvacrol in SiD vs. SiW, as supported by micro- and macrostructural observations by SAXS and microscopy, respectively. An increase from 143 to 157 °C attributable to carvacrol protection and Tg = 44.4 °C (> ambient) were obtained by TGA and DSC, respectively. FT-IR confirmed intermolecular interactions (e.g. -COO- and -NH3+) as well as H-bonding formation. High water solubility (81 ± 3 %), low hygroscopicity (8.8 ± 0.2 %(w/w), poor flowability (CI:45 ± 4), and high cohesiveness (HR:1.8 ± 0.1) between particles were achieved, leading to a powdered antioxidant additive with high potential for applications which required avoiding/reducing oxidation on hydrophilic and hydrophobic food products.


Assuntos
Alginatos , Antioxidantes , Quitosana , Cimenos , Emulsões , Polissacarídeos , Pós , Quitosana/química , Antioxidantes/química , Antioxidantes/farmacologia , Cimenos/química , Alginatos/química , Emulsões/química , Polissacarídeos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
6.
Microorganisms ; 12(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930581

RESUMO

Sourdough production is a complex fermentation process. Natural sourdough fermentation without standardization causes great variability in microbial communities and derived products. Starter cultures have emerged as alternatives to natural fermentation processes, which could improve bakery quality and produce bioactive compounds. This study aimed to evaluate the impacts of freeze-drying on the production and viability of sourdoughs with Lactiplantibacillus pentosus 129 (Lp) and Limosilactobacillus fermentum 139 (Lf), as well as their effects on the quality of long-fermentation bread. These strains were selected based on their better performance considering acidification and exopolysaccharide production capacity. Sourdough with Lp and Lf were propagated until the 10th day, when physicochemical and microbiological parameters were determined. The produced sourdoughs were freeze-dried, and bread samples were produced. The freeze-drying process resulted in high survival rates and few impacts on the metabolic activity of Lp and Lf until 60 days of storage. Incorporating Lp and Lf improved the microbiological and physicochemical properties of sourdough and long-fermentation breads. Tested freeze-dried sourdoughs led to reduced bread aging (higher specific volume and decreased starch retrogradation) and increased digestibility. The results show the potential of the freeze-dried sourdoughs produced with Lp and Lf as innovative strategies for standardizing production protocols for the bakery industry, especially for producing long-term fermentation bread.

7.
Appl Microbiol Biotechnol ; 108(1): 361, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837050

RESUMO

Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.


Assuntos
Liofilização , Liofilização/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Secagem por Atomização , Viabilidade Microbiana , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Lactobacillus delbrueckii/metabolismo , Lactobacillus delbrueckii/fisiologia , Lactobacillales/metabolismo , Lactobacillales/fisiologia , Dessecação
8.
Foods ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38890850

RESUMO

Bixin is the main carotenoid found in the outer portion of the seeds of Bixa orellana L., commercially known as annatto. This compound is industrially employed in pharmaceutical, cosmetic, and food formulations as a natural dye to replace chemical additives. This study aimed to extract bixin from annatto seeds and obtain encapsulated bixin in a powder form, using freeze-drying encapsulation and maltodextrin as encapsulating agent. Bixin was extracted from annatto seeds employing successive washing with organic solvents, specifically hexane and methanol (1:1 v/v), followed by ethyl acetate and dichloromethane for subsequent washes, to effectively remove impurities and enhance bixin purity, and subsequent purification by crystallization, reaching 1.5 ± 0.2% yield (or approximately 15 mg of bixin per gram of seeds). Bixin was analyzed spectrophotometrically in different organic solvents (ethanol, isopropyl alcohol, dimethylsulfoxide, chloroform, hexane), and the solvents chosen were chloroform (used to solubilize bixin during microencapsulation) and hexane (used for spectrophotometric determination of bixin). Bixin was encapsulated according to a 22 experimental design to investigate the influence of the concentration of maltodextrin (20 to 40%) and bixin-to-matrix ratio (1:20 to 1:40) on the encapsulation efficiency (EE%) and solubility of the encapsulated powder. Higher encapsulation efficiency was obtained at a maltodextrin concentration of 40% w/v and a bixin/maltodextrin ratio of 1:20, while higher solubility was observed at a maltodextrin concentration of 20% w/v for the same bixin/maltodextrin ratio. The encapsulation of this carotenoid by means of freeze-drying is thus recognized as an innovative and promising approach to improve its stability for further processing in pharmaceutical and food applications.

9.
CienciaUAT ; 18(2): 145-154, ene.-jun. 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1569027

RESUMO

Resumen: Los cormos de malanga son tallos subterráneos con alto valor nutrimental por su contenido de carbohidratos y proteínas, además de ser altamente digestivos. El almidón que se extrae de ellos puede ser utilizado en la encapsulación de microorganismos probióticos, de gran importancia para la salud. El objetivo de este trabajo fue desarrollar un suplemento alimenticio con características funcionales, usando bacterias ácido lácticas (BAL) (Lactobacilos casei), encapsuladas en almidón de malanga (Xanthosoma sagittifolium). El suplemento se realizó mezclando 150 mL de pulpa de fruta cocida (mango o manzana) con 400 mL de suero de leche (pH de 6.0), a 45 ± 1 °C, hasta conseguir la consistencia deseada (449.9 mPas/s a una temperatura de 25 ºC). Posteriormente, se adicionaron 1 % o 2 % de almidón de malanga (p/v) y 10 mL de cultivo probiótico por cada 100 mL de mezcla. Se deshidrató a 80 ºC y 150 ºC con flujo de aire de 20 mL/min para manzana y 8 mL/min para mango mediante secado por aspersión. El rendimiento fue de 12 %, con una viabilidad de las BAL en el suplemento deshidratado a los 3 meses de almacenamiento superior a 1 x 108 UFC/g. La ausencia de bacterias coliformes, así como de salmonella y shigella, indican que los suplementos son inocuos y aptos para consumo. La composición nutrimental del suplemento de manzana obtenido fue2.23 % de fibra, 5.93 % de grasa, 4.95 % de proteína y un 79 % de hidratos de carbono; el suplemento de mango, el contenido fue 0.59 % de fibra, 7.6 % de grasa, 4.2 % de proteína y 80.20 % de hidratos de carbono. El almidón de malanga permitió la microencapsulación de las BAL y mantener su viabilidad durante el almacenamiento de los suplementos alimenticios desarrollados con base en suero de leche y fruta.


Abstract: Malanga corms are an underground stem with a high nutritional value as it contains carbohydrates and proteins, in addition to being highly digestive; The starch extracted from them can be used in the encapsulation of probiotic microorganisms, which are of great importance for human health. The objective of this work was to develop a food supplement with functional characteristics, added with lactic acid bacteria (Lactobacillus casei) (LAB), using malanga (Xanthosoma sagittifolium) starch. The supplement was obtained by mixing 150 mL of cooked fruit pulp (mango or apple) with 400 mL of sweet whey (pH of 6.0), at a temperature of 45 ± 1 °C until the desired consistency (449.9 mPas/s at a temperature of 25 °C) was achieved. Subsequently, 1 % or 2 % of malanga starch (p/v) and 10 mL of probiotic cultures were added per each 100 mL of mixture. it was then dehydrated at 80 ºC and 150 °C with an air flow of 20 mL/min for apple and 8 mL/min for mango by spray drying. The yield was 12 %, with viability of LAB in the dehydrated supplement at 3 months of storage higher than 1 x 108 CFU/g. The absence of coliform bacteria, as well as Salmonella and Shigella, indicate that the supplements are safe and suitable for consumption. The nutritional composition of the apple supplement was 2.23 % fiber, 5.93 % fat, 4.95 % protein and 79 % carbohydrates; the mango supplement content was 0.59 % fiber, 7.6 % fat, 4.2 % protein and 80.20 % carbohydrates. The malanga starch allowed the LAB microencapsulation and the maintenance of their viability during the storage of sweet whey and fruit-based food supplements.

10.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794169

RESUMO

Alginate encapsulates loaded with clove essential oil (CEO) were prepared by ionic gelation, with subsequent freeze-drying. The objective of the present work was to develop a product with the ability to protect CEO against its easy volatility and oxidation. The following techniques were used to characterize the formulations: eugenol release, degree of swelling, GC/MS, TGA/DSC, and SEM. The alginate solution (1.0%) containing different concentrations of CEO (LF1: 1.0%; LF2: 0.5%; LF3: 0.1%) was dropped into a 3.0% CaCl2 solution. After lyophilization, the encapsulated samples were wrinkled and rigid, with high encapsulation power (LF3: 76.9% ± 0.5). Three chemical components were identified: eugenol (the major one), caryophyllene, and humulene. The antioxidant power (LF1: DPPH IC50 18.1 µg mL-1) was consistent with the phenol content (LF1: 172.2 mg GAE g-1). The encapsulated ones were thermally stable, as shown by analysis of FTIR peaks, eugenol molecular structure was kept unaltered. The degree of swelling was 19.2% (PBS). The release of eugenol (92.5%) in the PBS solution was faster than in the acidic medium. It was concluded that the low-cost technology used allows the maintenance of the content and characteristics of CEO in the three concentrations tested, offering a basis for further research with essential oil encapsulates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA