Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 8(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759661

RESUMO

Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.

2.
FEMS Yeast Res ; 16(7)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634774

RESUMO

Paracoccidioides spp., which are temperature-dependent dimorphic fungi, are responsible for the most prevalent human systemic mycosis in Latin America, the paracoccidioidomycosis. The aim of this study was to characterise the involvement of elongation factor Tu (EF-Tu) in Paracoccidioides brasiliensis-host interaction. Adhesive properties were examined using recombinant PbEF-Tu proteins and the respective polyclonal anti-rPbEF-Tu antibody. Immunogold analysis demonstrated the surface location of EF-Tu in P. brasiliensis. Moreover, PbEF-Tu was found to bind to fibronectin and plasminogen by enzyme-linked immunosorbent assay, and it was determined that the binding to plasminogen is at least partly dependent on lysine residues and ionic interactions. To verify the participation of EF-Tu in the interaction of P. brasiliensis with pneumocytes, we blocked the respective protein with an anti-rPbEF-Tu antibody and evaluated the consequences on the interaction index by flow cytometry. During the interaction, we observed a decrease of 2- and 3-fold at 8 and 24 h, respectively, suggesting the contribution of EF-Tu in fungal adhesion/invasion.


Assuntos
Interações Hospedeiro-Patógeno , Paracoccidioides/enzimologia , Fator Tu de Elongação de Peptídeos/metabolismo , Fatores de Virulência/metabolismo , Células Epiteliais Alveolares/microbiologia , Adesão Celular , Linhagem Celular , Fibronectinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Paracoccidioides/fisiologia , Plasminogênio/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA