Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 4): 134323, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094871

RESUMO

This study aimed to evaluate the effect of applying oxidized cassava starch-based edible coatings with addition of lemongrass essential oil emulsion on 'Palmer' mangoes stored under refrigeration. A completely randomized design was used, arranged in a 5 × 3 factorial scheme, with five types of coatings and three evaluation times. The evaluated postharvest quality parameters consisted of weight loss, pulp and peel firmness, biochemical transformations related to pigments, and pulp and peel coloration of mango. The application of edible coatings with a 0.9 % EO concentration resulted in delayed fruit ripening, evidenced mainly by a 7.25 % reduction in weight loss, a 29.23 % increase in soluble solids content, and a 24.15 % decrease in total chlorophyll, when compared to uncoated fruits, which showed 19.8 %, 48.66 %, and 82.00 %, respectively, over the storage period. This effect was also evident in the angle Hue (°h) measurement, with uncoated fruits showing a decrease of 32.2 %. The antimicrobial effect and absence of anthracnose symptoms were observed in the fruits in which the coating with 0.9 % EO was applied. Therefore, biodegradable coating with the addition of 0.9 % emulsion EO, can be used as postharvest treatments for maintenance quality of 'Palmer' mangoes during refrigerated storage.


Assuntos
Emulsões , Conservação de Alimentos , Frutas , Mangifera , Manihot , Óleos Voláteis , Amido , Mangifera/química , Manihot/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Amido/química , Conservação de Alimentos/métodos , Frutas/química , Armazenamento de Alimentos/métodos , Filmes Comestíveis
2.
J Sci Food Agric ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958470

RESUMO

BACKGROUND: The Cosmos sulphureus Cav. plant is studied for its high polyphenolic content with antioxidant properties. Its flowers, rich in phenolic acids, flavonoids, and tannins, hold promise as antioxidants in food preservation. The inclusion of these compounds in chickpea-based coatings with a previously studied preservative effect would be an excellent option as a food preservation method and microencapsulation addresses challenges like dispersion and degradation of polyphenols in the coating. The objective of this research was to evaluate the in vitro antioxidant activity of Cosmos sulphureus leaves, seed, and flower extracts and explore the protective effects of chickpea-based coatings containing microcapsules of flower polyphenolic extract on the chemical quality of stored roasted sunflower seeds during storage. RESULTS: The ethanolic leaf extract exhibited the highest antiradical activity, followed by the aqueous flower extract. After a storage period of 15 days, at 40 °C, the chickpea-based coatings effectively delayed lipid oxidation in the roasted sunflowers seeds, and the inclusion of polyphenolic microcapsules with 0.01% extract (SMC 0.01%) in the coating significantly improved the protective effect. By day 15 of storage, SMC 0.01% showed comparable peroxide value, conjugated dienes, and linoleic acid content to samples containing the synthetic antioxidant BHT (butylated hydroxytoluene). Samples that only contained chickpea-based coating and coating with polyphenolic microcapsules with 0.005% extract exhibited significantly greater reduction in fatty acid content compared to the 0.01% SMC treatment. CONCLUSION: The chickpea-based coating with polyphenolic microcapsules demonstrated antioxidant activity akin to synthetic BHT, offering a promising biopackaging solution for lipid-rich foods like roasted sunflower seeds. © 2024 Society of Chemical Industry.

3.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834129

RESUMO

Strawberries are a rich source of vitamins and antioxidants, among other nutrients, but they are highly susceptible to mechanical injuries, dehydration, and microbial spoilage, and thus have a limited post-harvest shelf-life. Bioactive edible coatings have been studied to decrease or prevent these damages. In this study, ethanolic extracts of Arrayan (Luma apiculata), a traditional berry from the south of Chile, were used to enrich a chitosan-based edible film and coat fresh strawberries. A long-term storage (10 °C) study was conducted to determine the strawberries' weight loss, microbial stability, fruit firmness impact, and antioxidant activity. Later, a sensory panel was conducted to determine overall consumer acceptance. Our results show that the bioactive coating inhibited the growth of different pathogenic bacteria and spoilage yeast. In the stored strawberries, the weight loss was significantly lower when the bioactive coating was applied, and the samples' firmness did not change significantly over time. Microbial growth in the treated strawberries was also lower than in the control ones. As expected, the antioxidant activity in the coated strawberries was higher because of the Arrayan extract, which has high antioxidant activity. Regarding sensory qualities, the covered strawberries did not show significant differences from the uncoated samples, with an overall acceptance of 7.64 on a 9-point scale. To our knowledge, this is the first time an edible coating enriched with Arrayan extracts has been reported as able to prevent strawberries' decay and spoilage.


Assuntos
Quitosana , Fragaria , Humanos , Antioxidantes/farmacologia , Conservação de Alimentos/métodos , Quitosana/farmacologia , Frutas/microbiologia , Redução de Peso
4.
J Food Sci ; 88(4): 1237-1252, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36789846

RESUMO

The objective of this study was to evaluate the protective effect of a chickpea-based edible coating with the addition of polyphenols on the chemical, microbiological, and sensory quality of roasted sunflower seeds throughout storage. Four different samples were prepared: roasted sunflower seeds (control sample, SF-C), roasted sunflower seeds with BHT (SF-BHT), roasted sunflower seeds with chickpea-based coating (SF-CCs), and roasted sunflower seeds with chickpea-based coating with chickpea polyphenolic extract (SF-CCPE). The samples were stored for 60 days at room temperature, and their chemical, microbiological, and sensory parameters were analyzed. The acceptability of fresh samples was also studied. The use of chickpea-based coatings retarded the lipid oxidation process efficiently, but the inclusion of chickpea polyphenols in the coating enhanced the protective effect. At 60th day of storage, no statistically significant differences were found between SF-CCPE and SF-BHT in relation to peroxides and conjugated dienes values, saturated/unsaturated ratio, and hexanal content. Linoleic acid content was reduced significantly more in SF-CCs than SF-CCPE. The addition of chickpea coating with chickpea antioxidants did not modify the flavor of the sunflower seeds and was the most accepted treatment by the consumer. The formation of undesirable flavors (cardboard and oxidized) was less in SF-CC, SF-CCPE, and SF-BHT without finding significant differences between these treatments. None of the samples presented microbiological contamination or an increase in bacteria, yeast, and molds during storage. The chickpea-based coating was able to retard lipid oxidation in roasted sunflower seeds, proving to be a good alternative as a natural method to preserve foods with high lipid content. PRACTICAL APPLICATION: Discarded chickpeas and chickpea husks constitute byproducts from the chickpea industry. The grain husks are currently discarded or marketed at a very low cost, constituting a novel residue with antioxidant properties. Considering the growing interest in sustainability and the circular economy, this investigation proposes the utilization of nutritional materials to prepare edible coatings. The chickpea-based coatings loaded with polyphenol extract (obtained from the husk of chickpea) demonstrated to have a protective effect against lipid oxidation process in sunflower seeds, which represent a good alternative to be used for the food industry to increase the shelf life of lipid foods.


Assuntos
Cicer , Filmes Comestíveis , Helianthus , Conservação de Alimentos/métodos , Polifenóis , Paladar , Antioxidantes , Sementes , Extratos Vegetais , Lipídeos
5.
Food Res Int ; 161: 111826, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192894

RESUMO

This study evaluated the effects of coatings with juá mucilage (JM), juá mucilage incorporated with phenolic extract from juá (JMPE), and juá mucilage with gum arabic (JM-GA) on quality parameters, bioactive compounds and antioxidant activity of fresh-cut pineapple during 9 days at 5 ± 1 °C. JM and JMPE coatings were effective in reducing enzymatic activity, consequently reducing changes in fruit color compared to uncoated fresh-cut pineapple (C). JM coating was more efficient in reducing metabolic activity with the lowest conversion of sugars into glucose, fructose and organic acids. In addition, JMPE coating showed the highest retention of phenolics. On the other hand, JM had a minor reduction in antioxidant activity in FRAP (39.55 %) and ORAC (33.46 %) assay compared to other coatings (p ≤ 0.05). Findings indicate that JM and JMPE are promising for application to preserve the overall quality and to extend the shelf life of fresh-cut pineapple.


Assuntos
Ananas , Ziziphus , Antioxidantes/análise , Conservação de Alimentos , Frutose , Glucose , Goma Arábica , Fenóis/análise , Extratos Vegetais , Açúcares
6.
Vitae (Medellín) ; 29(3): 1-12, 2022-08-18. Ilustraciones
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1393178

RESUMO

Background: This research was motivated by the complaints of tomato farmers about their crops that quickly rotted before being sold, as well as the many research results (raw materials and methods) that edible coating films could not be applied optimally. Objectives: The research was a practical recommendation by comparing the effectiveness of raw materials (polysaccharides, proteins, and lipids) with the dipping and spray methods. Materials and methods used in the comparison process were the application of Structural Equation Modeling (SEM) with the Partial Least Square (PLS) approach. Results: Dipping has a strong effect (f2 ≥ 0.35; p<0.05), while spray had a moderate effect (f2: 0.15-0.35; p<0.05). Thus, the role of dipping as a mediator was more dominant than spray. Compared to proteins and lipids, polysaccharides had the best effectiveness (ß:0.460-0.584; f2: 0.15-0.35; p<0.05). Conclusion: the three ingredients improved the quality of tomatoes, and the dipping method was easier to apply by farmers than the spray method, which had many obstacles in its application


Antecedentes: esta investigación está motivada por las quejas de los productores de tomate sobre sus cultivos que se pudren rápidamente antes de ser vendidos, así como por los muchos resultados de la investigación (materias primas y métodos) de que las películas de recubrimiento comestibles no se pudieron aplicar de manera óptima. Objetivos: La investigación consiste en recomendaciones prácticas mediante la comparación de la eficacia de las materias primas (polisacáridos, proteínas y lípidos) con los métodos de inmersión y aspersión. Métodos: El método utilizado en el proceso de comparación es la aplicación del modelo de ecuaciones estructurales (SEM) con el enfoque de mínimos cuadrados parciales (PLS). Resultados: La inmersión tiene un efecto fuerte (f2 ≥ 0,35; p<0,05), mientras que la pulverización tiene un efecto moderado (f2: 0,15-0,35; p<0,05). Por lo tanto, el papel de la inmersión como mediador es más dominante que el del rociado. Los polisacáridos tienen la mejor eficacia (ß:0,460-0,584; f2: 0,15-0,35; p<0,05) en comparación con las proteínas y los lípidos. Conclusión: es que los tres ingredientes pueden mejorar la calidad de los tomates, y el método de inmersión es más fácil de aplicar por los agricultores que el método de aspersión, que tiene muchos obstáculos en su aplicación


Assuntos
Humanos , Qualidade dos Alimentos , Solanum lycopersicum , Imersão , Polissacarídeos/administração & dosagem , Efetividade , Proteínas/administração & dosagem , Análise de Classes Latentes , Lipídeos/administração & dosagem
7.
J Appl Microbiol ; 132(1): 547-561, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34331731

RESUMO

AIM: This study evaluated the inhibitory effects on mycelial growth and damage on membrane integrity and enzymatic activity caused by Conyza bonariensis essential oil (CBEO) on distinct pathogenic Colletotrichum musae isolates, as well as the preventive and curative effects of coatings with gum Arabic (GA) and CBEO to reduce anthracnose development in banana during room temperature storage. The effects of GA-CBEO coatings on some physicochemical parameters of banana were investigated during room temperature storage. METHOD AND RESULTS: CBEO (0.4-1 µl ml-1 ) inhibited the mycelial growth of C. musae isolates in laboratory media. The exposure of C. musae conidia to CBEO (0.6 µl ml-1 ) for 3 and 5 days resulted in high percentages of conidia with damaged cytoplasmic membrane and without enzymatic activity. Coatings with GA (0.1 mg ml-1 ) and CBEO (0.4-1 µl ml-1 ) reduced the anthracnose development in banana artificially contaminated with C. musae during storage. In most cases, the disease severity indexes found for GA-CBEO-coated banana were lower than or similar to those for banana treated with commercial fungicide. GA-CBEO-coated banana had reduced alterations in physicochemical parameters during storage, indicating more prolonged storability. CONCLUSION: The application of GA-CBEO coatings is effective to delay the anthracnose development in banana during storage, which should help to reduce the amount of fungicides used to control postharvest diseases in this fruit. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study showing the efficacy of coatings formulated with GA and CBEO to delay the development of anthracnose in banana, as well as to decrease alterations in physicochemical parameters indicative of postharvest quality of this fruit during storage. In a practical point of view, GA-CBEO coatings could be innovative strategies to delay the anthracnose development and postharvest losses in banana.


Assuntos
Colletotrichum , Conyza , Musa , Óleos Voláteis , Antifúngicos/farmacologia , Goma Arábica , Óleos Voláteis/farmacologia
8.
Molecules ; 26(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34885783

RESUMO

The production of edible film from onion (Allium cepa L.) to be applied as packaging is attractive, due to its chemical properties and biodegradable characteristics. Thus, we tested the hypothesis that edible onion film can positively influence the sensory properties, quality and increasing shelf life of beef burgers patties. The experiment was designed in a 4 × 2 factorial scheme, with two treatments (beef burgers patties with or without edible onion film) at an interval of four storage times (0, 3, 6 and 9 days) at 4 °C. The uncoated burger patties (control) suffered the most intense color modifications during the storage (p < 0.05). The luminosity index was higher (p < 0.05) in the control at all storage times, except at day 6, and redness, yellowness and chrome were higher (p < 0.05) in the edible onion film patties at all storage times. The pH of the beef burger patties was lower (p < 0.05) at all storage times when the edible onion film was applied. For the texture profile, only the chewiness was affected, as the inclusion of the edible onion film improved the chewing of the beef burgers patties over the storage time (p < 0.05). Additionally, there was an inhibition of the microbial growth of mesophiles and psychrophiles with the application of the edible onion film in beef burgers patties. The use of edible onion film improved the perception of panelists for the variables texture, color, flavor, odor and overall appearance, and increased the preference of panelists. The edible onion film is recommended for preserving beef burgers patties, as it delays the proliferation of unwanted microorganisms, stabilizes and improves the color parameters and sensory attributes, and increases the overall acceptance of the consumer.


Assuntos
Filmes Comestíveis , Armazenamento de Alimentos , Alimentos , Cebolas/química , Carne Vermelha/análise , Sensação , Cor , Lipídeos/química , Oxirredução
9.
Data Brief ; 38: 107295, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34485638

RESUMO

The information presented is part of an investigation that seeks a better understanding of lipid oxidation in walnuts. The data shown regarding edible coating, are one of the strategies used to investigate the effect over oxidation stability. For the present experiments, unshelled walnuts were coated with different formulations, and then stored at 37 °C, 20% RH for 6 weeks. After that time, coated nuts were taken out, cold pressed to extract the oil and analysed. The main data obtained from the oil analysis of walnuts were acid value, peroxide value, and thiobarbituric acid reactive substances (TBARS). Data show the variation of the parameters during the storage time at 37 °C, considering the different formulations of edible coatings and the control. These data are relevant to walnuts exporters to have a comparison point.

10.
Heliyon ; 7(9): e07988, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34568603

RESUMO

Physalis peruviana is marketed without its calyx, which generates byproducts and a decrease in the shelf life of these fruits. The aim of this study was to evaluate the effect of edible pectin-coatings reinforced with nanocellulose from calyx on the physical-chemical and physiological parameters of P. peruviana fruits during refrigerated storage (5 °C) for ten days. The nanocellulose extraction was carried out using a combined extraction method (chemical procedures and ultrasound radiation). The characterization of the fibers showed that the maximum degradation temperatures ranged between 300 and 311 °C. The SEM analysis revealed the presence of fibers after the chemical treatment. The removal of lignin and hemicellulose was validated using Fourier Transform Infra Red (FTIR) spectroscopy. The results showed that the fruits treated with pectin and pectin reinforced with nanocellulose at 0.5 % (w/w) had an adequate visual appearance and showed a minor color change (ΔE of 19.04 and 21.04, respectively) and the highest retention of L∗ during storage. Although the addition of nanocellulose at 0.5% presented the lowest respiratory rate (29.60 mgCO2/kg h), the treatment with pectin offered the least weight loss and showed the highest firmness retention at the end of storage. Thus, the edible pectin-coating may be useful for improving the postharvest quality and storage life of fresh P. peruviana fruit. Nanocellulose from P. peruviana calyces can be used under the concept of a circular economy; although, its use as a reinforcement of pectin showed some limitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA