Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. med. biol. res ; 57: e13961, fev.2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564160

RESUMO

Glioblastomas are known for their poor clinical prognosis, with recurrent tumors often exhibiting greater invasiveness and faster growth rates compared to primary tumors. To understand the intratumoral changes driving this phenomenon, we employed single-cell sequencing to analyze the differences between two pairs of primary and recurrent glioblastomas. Our findings revealed an upregulation of ferroptosis in endothelial cells within recurrent tumors, identified by the significant overexpression of the NOX4 gene. Further analysis indicated that knocking down NOX4 in endothelial cells reduced the activity of the ferroptosis pathway. Utilizing conditioned media from endothelial cells with lower ferroptosis activity, we observed a decrease in the growth rate of glioblastoma cells. These results highlighted the complex role of ferroptosis within tumors and suggested that targeting ferroptosis in the treatment of glioblastomas requires careful consideration of its effects on endothelial cells, as it may otherwise produce counterproductive outcomes.

2.
Radiol. bras ; 56(3): 157-161, May-June 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1449032

RESUMO

Abstract The purpose of this pictorial essay is to describe the recommendations of the 2021 World Health Organization classification for adult-type and pediatric-type gliomas and to discuss the main modifications in relation to the previous (2016) classification, exemplified by imaging, histological, and molecular findings in nine patients followed at our institutions. In recent years, molecular biomarkers have gained importance in the diagnosis and classification of gliomas, mainly because they have been shown to correlate with the biological behavior and prognosis of such tumors. It is important for neuroradiologists to familiarize themselves with this new classification of central nervous system tumors, so that they can use this knowledge in evaluating and reporting the imaging examinations of patients with glioma.


Resumo O propósito deste ensaio iconográfico é descrever e discutir as novas recomendações da Organização Mundial da Saúde de 2021, referente aos gliomas dos tipos adulto e infantil, e suas principais diferenças com a classificação anterior (2016), exemplificadas com imagens de nove casos de pacientes atendidos nas nossas instituições. Recentemente, há uma crescente significância dos marcadores moleculares no diagnóstico e classificação dos gliomas e tumores do sistema nervoso central, principalmente pela correlação com o comportamento biológico e o prognóstico. É importante que os neurorradiologistas estejam familiarizados com a nova classificação dos tumores do sistema nervoso central para a prática clínica, na avaliação e emissão de laudos e opiniões nas imagens dos pacientes com gliomas.

3.
Pharmaceutics ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35057010

RESUMO

Glioblastomas (GBMs) are tumors that have a high ability to migrate, invade and proliferate in the healthy tissue, what greatly impairs their treatment. These characteristics are associated with the complex microenvironment, formed by the perivascular niche, which is also composed of several stromal cells including astrocytes, microglia, fibroblasts, pericytes and endothelial cells, supporting tumor progression. Further microglia and macrophages associated with GBMs infiltrate the tumor. These innate immune cells are meant to participate in tumor surveillance and eradication, but they become compromised by GBM cells and exploited in the process. In this review we discuss the context of the GBM microenvironment together with the actions of flavonoids, which have attracted scientific attention due to their pharmacological properties as possible anti-tumor agents. Flavonoids act on a variety of signaling pathways, counteracting the invasion process. Luteolin and rutin inhibit NFκB activation, reducing IL-6 production. Fisetin promotes tumor apoptosis, while inhibiting ADAM expression, reducing invasion. Naringenin reduces tumor invasion by down-regulating metalloproteinases expression. Apigenin and rutin induce apoptosis in C6 cells increasing TNFα, while decreasing IL-10 production, denoting a shift from the immunosuppressive Th2 to the Th1 profile. Overall, flavonoids should be further exploited for glioma therapy.

4.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33899118

RESUMO

Glioblastomas (GBMs) are the most frequent and malignant type of brain tumor. It has been reported that progesterone (P4) regulates the progression of GBMs by modifying the expression of genes that promote cell proliferation, migration and invasion; however, it is not fully understood how these processes are regulated. It is possible that P4 mediates some of these effects through changes in the microRNA (miRNA) expression profile in GBM cells. The present study investigated the effects of P4 on miRNAs expression profile in U­251MG cells derived from a human GBM. U­251MG cells were treated for 6 h with P4, RU486 (an antagonist of the intracellular progesterone receptor), the combined treatment (P4+RU486) and cyclodextrin (vehicle) and then a miRNA microarray analysis conducted. The expression analysis revealed a set of 190 miRNAs with differential expression in the treatments of P4, RU486 and P4+RU486 in respect to the vehicle and P4 in respect to P4+RU486, of which only 16 were exclusively regulated by P4. The possible mRNA targets of the miRNAs regulated by P4 could participate in the regulation of proliferation, cell cycle progression and cell migration of GBMs. The present study provided insight for understanding epigenetic modifications regulated by sex hormones involved in GBM progression, and for identifying potential therapeutic strategies for these brain tumors.


Assuntos
Glioblastoma/genética , MicroRNAs/genética , Progesterona/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , MicroRNAs/metabolismo , Mifepristona/farmacologia , Receptores de Progesterona/antagonistas & inibidores , Transcriptoma/efeitos dos fármacos
5.
Methods Mol Biol ; 2174: 19-29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32813242

RESUMO

Glioblastomas (GBM) are the most frequent and aggressive brain tumors due to their recurrence and resistance to current therapies. These characteristics are associated with the presence of glioma stem cells (GSCs), mainly identified by the detection of the membrane antigens CD133 and CD15. The main source of GSCs has been biopsies of tumors. However, alternatives are sought from cell lines because more homogeneous populations can be obtained with high yields. This chapter describes a method for the enrichment and characterization of GSCs from cell lines derived from human GBM by selective culture with serum-free neural stem cell medium and growth factors. The technique offers alternatives for the enrichment and characterization of GSCs, that could contribute to a better understanding of the biology of GBMs.


Assuntos
Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Antígeno AC133/análise , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro/química , Meios de Cultura Livres de Soro/farmacologia , Citometria de Fluxo , Glioblastoma/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Antígenos CD15/análise , Células-Tronco Neoplásicas/fisiologia , Células-Tronco Neurais/citologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30778332

RESUMO

Glioblastomas (GBM) are the most frequent and aggressive human brain tumors due to their high capacity to migrate and invade normal brain tissue. Epidemiological data report that GBM occur in a greater proportion in men than in women (3:2), suggesting the participation of sex hormones in the development of these tumors. It has been reported an increase in testosterone (T) levels in patients with GBM. In addition, androgen receptor (AR) is overexpressed in human GBM, and genetic silencing of AR, and its pharmacological inhibition, induce GBM cell death in vivo and in vitro. However, the role of T in proliferation, migration and invasion in human GBM cell lines has not been evaluated. We observed that T increased the number of U87, U251, and D54 cells derived from human GBM due to an increase in cell proliferation. This induction was blocked with flutamide, an antagonist of AR. T also induced migration and invasion of GBM cells that flutamide partially blocked. These data suggest that T through AR contributes to the progression of GBM by promoting proliferation, migration, and invasion.

7.
Ann Diagn Pathol ; 37: 62-66, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30286327

RESUMO

Astrocytomas represent the majority of cerebral gliomas. Studies show that the anti-inflammatory protein Annexin-A1 (ANXA1) is associated with the tumor invasion process and that its actions can be mediated by the receptor for formylated peptides (FPR). Therefore, we evaluated the expression of ANXA1, the receptor FPR2 and matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) in brain astrocytomas. Detection of proteins was performed in sections of diffuse astrocytomas (grade II), anaplastic astrocytomas (grade III) and glioblastomas (GBM, grade IV) and quantifications were made by densitometry. Our analyses showed increased expression of ANXA1 in astrocytomas of all grades, but especially in GBM. The expression of FPR2 is similar to that found for ANXA1, being higher in GBM. Immunostaining for MMPs is also stronger as the degree of malignancy increases, especially with respect to MMP-9. The positive correlation between ANXA1/FPR2 and ANXA1/MMP-9 was observed in all tumors studied. The data indicate the possible action of ANXA1 and FPR2 on the development and progression of astrocytomas, related to increased expression of MMP-9. Thereby, ANXA1 and FPR2 are involved in the biology and malignancy of diffuse astrocytic tumors.


Assuntos
Anexina A1/biossíntese , Astrocitoma/patologia , Biomarcadores Tumorais/biossíntese , Neoplasias Encefálicas/patologia , Receptores de Formil Peptídeo/biossíntese , Receptores de Lipoxinas/biossíntese , Adulto , Idoso , Feminino , Humanos , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Pessoa de Meia-Idade
8.
Int J Mol Sci ; 19(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543748

RESUMO

Glioblastomas (GBM) are the most frequent and aggressive brain tumors. In these malignancies, progesterone (P4) promotes proliferation, migration, and invasion. The P4 metabolite allopregnanolone (3α-THP) similarly promotes cell proliferation in the U87 human GBM cell line. Here, we evaluated global changes in gene expression of U87 cells treated with 3α-THP, P4, and the 5α-reductase inhibitor, finasteride (F). 3α-THP modified the expression of 137 genes, while F changed 90. Besides, both steroids regulated the expression of 69 genes. After performing an over-representation analysis of gene ontology terms, we selected 10 genes whose products are cytoskeleton components, transcription factors, and proteins involved in the maintenance of DNA stability and replication to validate their expression changes by RT-qPCR. 3α-THP up-regulated six genes, two of them were also up-regulated by F. Two genes were up-regulated by P4 alone, however, such an effect was blocked by F when cells were treated with both steroids. The remaining genes were regulated by the combined treatments of 3α-THP + F or P4 + F. An in-silico analysis revealed that promoters of the six up-regulated genes by 3α-THP possess cyclic adenosine monophosphate (cAMP) responsive elements along with CCAAT/Enhancer binding protein alpha (CEBPα) binding sites. These findings suggest that P4 and 3α-THP regulate different sets of genes that participate in the growth of GBMs.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Pregnanolona/farmacologia , Transcriptoma/efeitos dos fármacos , Inibidores de 5-alfa Redutase/farmacologia , Linhagem Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/metabolismo , Finasterida/farmacologia , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
9.
Steroids ; 119: 36-42, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119080

RESUMO

Allopregnanolone (3α-THP) is one of the main reduced progesterone (P4) metabolites that is recognized as a neuroprotective and myelinating agent. 3α-THP also induces proliferation of different neural cells. It has been shown that P4 favors the progression of glioblastomas (GBM), the most common and aggressive primary brain tumors. However, the role of 3α-THP in the growth of GBMs is unknown. Here, we studied the effects of 3α-THP on the number of cells, proliferation and gene expression in U87 cell line derived from a human GBM. 3α-THP (10, 100nM and 1µM) increased the number of U87 cells, and at 10nM exerted a similar increase in both the number of total and proliferative U87 cells as compared with P4 (10nM). Interestingly, finasteride (F; 100nM), an inhibitor of 5α-reductase (5αR), an enzyme necessary to metabolize P4 and produce 3α-THP, blocked the increase in the number of U87 cells induced by P4. By using RT-qPCR, we determined that U87 cells express 5α-R isoenzymes 1 and 2 (5αR1 and 5αR2), being 5αR1 the predominant one in these cells. 3α-THP (10nM) increased the expression of TGFß1, EGFR, VEGF and cyclin D1 genes. P4 increased TGFß1 and EGFR expression, and this effect was blocked by F. These data provide evidence that P4, through its metabolite 3α-THP, can promote in part cell proliferation of human GBM cells by changing the expression of genes involved in tumor progression.


Assuntos
Glioblastoma/metabolismo , Pregnanolona/farmacologia , Progesterona/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colestenona 5 alfa-Redutase/metabolismo , Ciclina D1/metabolismo , Receptores ErbB/metabolismo , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
G3 (Bethesda) ; 6(7): 1867-78, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27172220

RESUMO

Copy number alterations (CNA) are one of the driving mechanisms of glioma tumorigenesis, and are currently used as important biomarkers in the routine setting. Therefore, we performed CNA profiling of 65 astrocytomas of distinct malignant grades (WHO grade I-IV) of Brazilian origin, using array-CGH and microsatellite instability analysis (MSI), and investigated their correlation with TERT and IDH1 mutational status and clinico-pathological features. Furthermore, in silico analysis using the Oncomine database was performed to validate our findings and extend the findings to gene expression level. We found that the number of genomic alterations increases in accordance with glioma grade. In glioblastomas (GBM), the most common alterations were gene amplifications (PDGFRA, KIT, KDR, EGFR, and MET) and deletions (CDKN2A and PTEN) Log-rank analysis correlated EGFR amplification and/or chr7 gain with better survival of the patients. MSI was observed in 11% of GBMs. A total of 69% of GBMs presented TERT mutation, whereas IDH1 mutation was most frequent in diffuse (85.7%) and anaplastic (100%) astrocytomas. The combination of 1p19q deletion and TERT and IDH1 mutational status separated tumor groups that showed distinct age of diagnosis and outcome. In silico validation pointed to less explored genes that may be worthy of future investigation, such as CDK2, DMRTA1, and MTAP Herein, using an extensive integrated analysis, we indicated potentially important genes, not extensively studied in gliomas, that could be further explored to assess their biological and clinical impact in astrocytomas.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteínas de Neoplasias/genética , Adolescente , Adulto , Idoso , Astrocitoma/diagnóstico , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Brasil , Criança , Hibridização Genômica Comparativa , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Gradação de Tumores , Proteínas de Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Telomerase/genética , Telomerase/metabolismo , Análise Serial de Tecidos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA