Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125811

RESUMO

Advanced glycated end products (AGEs) are cytotoxic compounds that are mainly increased in diabetes mellitus (DM), kidney failure, inflammation, and in response to the ingestion of AGE-rich diets. AGEs can also impair glycemic homeostasis by decreasing the expression of the Slc2a4 (solute carrier family 2 member 4) gene and its GLUT4 (solute carrier family 2, facilitated glucose transporter member 4) protein in muscle. However, the mechanisms underlying AGE's effect on adipocytes have not been demonstrated yet. This study investigated the effects of AGEs upon Slc2a4/GLUT4 expression in 3T3-L1 adipocytes, as well as the potential role of NFKB (nuclear factor NF-kappa-B) activity in the effects observed. Adipocytes were cultured in the presence of control albumin (CA) or advanced glycated albumin (GA) at concentrations of 0.4, 3.6, and 5.4 mg/mL for 24 h or 72 h. Slc2a4, Rela, and Nfkb1mRNAs were measured by RT-qPCR, GLUT4, IKKA/B, and p50/p65 NFKB subunits using Western blotting, and p50/p65 binding into the Slc2a4 promoter was analyzed by chromatin immunoprecipitation (ChIP) assay. GA at 0.4 mg/mL increased Slc2a4/GLUT4 expression after 24 h and 72 h (from 50% to 100%), but at 5.4 mg/mL, Slc2a4/GLUT4 expression decreased at 72 h (by 50%). Rela and Nfkb1 expression increased after 24 h at all concentrations, but this effect was not observed at 72 h. Furthermore, 5.4 mg/mL of GA increased the p50/p65 nuclear content and binding into Slc2a4 at 72 h. In summary, this study reveals AGE-induced and NFKB-mediated repression of Slc2a4/GLUT4 expression. This can compromise the adipocyte glucose utilization, contributing not only to the worsening of glycemic control in DM subjects but also the impairment of glycemic homeostasis in non-DM subjects under the high intake of AGE-rich foods.


Assuntos
Células 3T3-L1 , Adipócitos , Transportador de Glucose Tipo 4 , Produtos Finais de Glicação Avançada , Fator de Transcrição RelA , Animais , Camundongos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/genética , Regiões Promotoras Genéticas , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
2.
Biology (Basel) ; 13(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39056661

RESUMO

BACKGROUND: Human beings consume different chemical forms of iodine in their diet. These are transported by different mechanisms in the cell. The forms of iodine can be part of thyroid hormones, bind to lipids, be an antioxidant, or be an oxidant, depending on their chemical form. The excessive consumption of iodine has been associated with pancreatic damage and diabetes mellitus type 2, but the association between disease and the chemical form consumed in the diet is unknown. This research analyzes the effect of excessive iodine consumption as Lugol (molecular iodine/potassium iodide solution) and iodate on parameters of pancreatic function, thyroid and lipid profiles, antioxidant and oxidant status, the expression of IR/Akt/P-Akt/GLUT4, and transcription factors PPAR-γ and CEBP-ß. METHODS: Three groups of Wistar rats were treated with 300 µg/L of iodine in drinking water: (1) control, (2) KIO3, and (3) Lugol. RESULTS: Lugol and KIO3 consumption increased total iodine levels. Only KIO3 increased TSH levels. Both induced high serum glucose levels and increased oxidative stress and pancreatic alpha-amylase activity. Insulin levels and antioxidant status decreased significantly. PPAR-γ and C/EBP-ß mRNA expression increased. CONCLUSION: The pancreatic damage, hypertriglyceridemia, and oxidative stress were independent of the chemical form of iodine consumed. These effects depended on PPAR-γ, C/EBP-ß, GLUT-4, and IR.

3.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38533799

RESUMO

Insulin and muscle contraction trigger GLUT4 translocation to the plasma membrane, which increases glucose uptake by muscle cells. Insulin resistance and Type 2 diabetes are the result of impaired GLUT4 translocation. Quantifying GLUT4 translocation is essential for comprehending the intricacies of both physiological and pathophysiological processes involved in glucose metabolism. The most commonly used methods for measuring GLUT4 translocation are the ELISA-type assay and the immunofluorescence assay. While some reports suggest that flow cytometry could be useful in quantifying GLUT4 translocation, this technique is not frequently used. Much of our current understanding of the regulation of GLUT4 has been based on experiments using the rat myoblast cell line (L6 cell) which expresses GLUT4 with a myc epitope on the exofacial loop. In the present study, we use the L6-GLUT4myc cell line to develop a flow cytometry-based approach to detect GLUT4 translocation. Flow cytometry offers the advantages of both immunofluorescence and ELISA-based assays. It allows easy identification of separate cell populations in the sample, similar to immunofluorescence, while providing results based on a population-level analysis of multiple individual cells, like an ELISA-based assay. Our results demonstrate a 0.6-fold increase with insulin stimulation compared with basal conditions. Finally, flow cytometry consistently yielded results across different experiments and exhibited sensitivity under the tested conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Músculo Esquelético , Ratos , Animais , Músculo Esquelético/metabolismo , Citometria de Fluxo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Membrana Celular/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Transporte Proteico
4.
Biology (Basel) ; 13(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38248457

RESUMO

BACKGROUND: Epidemiological clinical reports have shown an association between iodine excess with diabetes mellitus type 2 and higher blood glucose. However, the relationship between iodine, the pancreas, adipose tissue, and glucose transport is unclear. The goal of this study was to analyze the effect of iodine concentrations (in Lugol solution) on glucose transport, insulin secretion, and its cytotoxic effects in mature 3T3-L1 adipocytes and pancreatic beta-TC-6 cells. METHODS: Fibroblast 3T3-L1, mature adipocytes, and pancreatic beta-TC-6 cells were treated with 1 to 1000 µM of Lugol (molecular iodine dissolved in potassium iodide) for 30 min to 24 h for an MTT proliferation assay. Then, glucose uptake was measured with the fluorescent analog 2-NBDG, insulin receptor, Akt protein, p-Akt (ser-473), PPAR-gamma, and Glut4 by immunoblot; furthermore, insulin, alpha-amylase, oxidative stress, and caspase-3 activation were measured by colorimetric methods and the expression of markers of the apoptotic pathway at the RNAm level by real-time PCR. RESULTS: Low concentrations of Lugol significantly induce insulin secretion and glucose uptake in pancreatic beta-TC-6 cells, and in adipose cells, iodine-induced glucose uptake depends on the serine-473 phosphorylation of Akt (p-Akt) and Glut4. Higher doses of Lugol lead to cell growth inhibition, oxidative stress, and cellular apoptosis dependent on PPAR-gamma, Bax mRNA expression, and caspase-3 activation in pancreatic beta-TC-6 cells. CONCLUSIONS: Iodine could influence glucose metabolism in mature adipocytes and insulin secretion in pancreatic beta cells, but excessive levels may cause cytotoxic damage to pancreatic beta cells.

5.
Pharmacology ; 108(6): 521-529, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37673038

RESUMO

INTRODUCTION: Obesity during pregnancy can contribute to hypertensive complications through changes in glucose utilization. We investigated the impact of vascular glucose uptake, GLUT4 density, and endothelium on agonist-induced vasoconstriction in the aortas of overweight pregnant rats. METHODS: Isolated aortic rings with or without endothelium from pregnant or nonpregnant rats fed a standard (SD) or hypercaloric diet (HD) were contracted with phenylephrine or serotonin (10-9 to 10-4M) using standard (11 mm) or without (0 mm) glucose Krebs solution. GLUT4 density in the aortas was measured using the en face method. RESULTS: Aortas from overweight pregnant animals (PHD) showed increased Phe-induced vasoconstriction (p < 0.05 vs. pregnant standard diet [PSD]), which was endothelium-independent. The contraction decreased significantly in the absence of glucose. In contrast, vessels from pregnant SD rats maintained their contraction in glucose-free Krebs solution. 5-HT increases PHD aortic contraction only in the absence of glucose. The fetal aortas from PHD mothers showed blunted vasoconstriction. Overweight significantly reduced GLUT4 expression in maternal and fetal aortas (p < 0.05 vs. PSD). CONCLUSIONS: Aortic contractility is independent of glucose uptake during healthy pregnancy. In contrast, overweight pregnancy increases contractility. This increase depends directly on smooth muscle glucose uptake and inversely on GLUT-4 density. The increased contraction observed in the vasculature of overweight mothers was inverted in the fetal aortas.


Assuntos
Sobrepeso , Gravidez , Vasoconstrição , Animais , Feminino , Gravidez/metabolismo , Ratos , Aorta , Glicemia/metabolismo , Endotélio Vascular , Sobrepeso/metabolismo , Fenilefrina/farmacologia , Fenilefrina/metabolismo , Serotonina/farmacologia , Serotonina/metabolismo
6.
Neuromuscul Disord ; 33(10): 817-821, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37743183

RESUMO

Early onset myopathies are a clinically and histologically heterogeneous monogenic diseases linked to approximately 90 genes. Molecular diagnosis is challenging, especially in patients with a mild phenotype. We describe a 26-year-old man with neonatal hypotonia, motor delay and seizures during infancy, and non-progressive, mild muscular weakness in adulthood. Serum Creatine kinase level was normal. Whole-body muscle MRI showed thin muscles, and brain MRI was unremarkable. A deltoid muscle biopsy showed glycogen storage. WGS revealed a de novo 1.4 Mb-deletion of chromosome 14, confirmed by Array-CGH. This microdeletion causes the loss of ten genes including RALGAPA1, encoding for RalA, a regulator of glucose transporter 4 (GLUT4) expression at the membrane of myofibers. GLUT4 was overexpressed in patient's muscle. Here we highlight the importance to search for chromosomal alterations in the diagnostic workup of early onset myopathies.


Assuntos
Glicogênio , Doenças Musculares , Masculino , Recém-Nascido , Humanos , Adulto , Cromossomos Humanos Par 14 , Doenças Musculares/genética , Hipotonia Muscular/genética , Fenótipo , Proteínas do Tecido Nervoso/genética , Proteínas Ativadoras de GTPase/genética
7.
Cells ; 12(9)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174649

RESUMO

Diabetes mellitus (DM) is an important risk factor for dementia, which is a common neurodegenerative disorder. DM is known to activate inflammation, oxidative stress, and advanced glycation end products (AGEs) generation, all capable of inducing neuronal dysfunctions, thus participating in the neurodegeneration progress. In that process, disturbed neuronal glucose supply plays a key role, which in hippocampal neurons is controlled by the insulin-sensitive glucose transporter type 4 (GLUT4). We investigated the expression of GLUT4, nuclear factor NF-kappa B subunit p65 [NFKB (p65)], carboxymethyllysine and synapsin1 (immunohistochemistry), and soma area in human postmortem hippocampal samples from control, obese, and obese+DM subjects (41 subjects). Moreover, in human SH-SY5Y neurons, tumor necrosis factor (TNF) and glycated albumin (GA) effects were investigated in GLUT4, synapsin-1 (SYN1), tyrosine hydroxylase (TH), synaptophysin (SYP) proteins, and respective genes; NFKB binding activity in the SLC2A4 promoter; effects of increased histone acetylation grade by histone deacetylase 3 (HDAC3) inhibition. Hippocampal neurons (CA4 area) of obese+DM subjects displayed reduced GLUT4 expression and neuronal soma area, associated with increased expression of NFKB (p65). Challenges with TNF and GA decreased the SLC2A4/GLUT4 expression in SH-SY5Y neurons. TNF decreased SYN1, TH, and SYP mRNAs and respective proteins, and increased NFKB binding activity in the SLC2A4 promoter. Inhibition of HDAC3 increased the SLC2A4 expression and the total neuronal content of CRE-binding proteins (CREB/ICER), and also counterbalanced the repressor effect of TNF upon these parameters. This study revealed reduced postmortem human hippocampal GLUT4 content and neuronal soma area accompanied by increased proinflammatory activity in the brains of DM subjects. In isolated human neurons, inflammatory activation by TNF reduced not only the SLC2A4/GLUT4 expression but also the expression of some genes related to neuronal function (SYN1, TH, SYP). These effects may be related to epigenetic regulations (H3Kac and H4Kac status) since they can be counterbalanced by inhibiting HDAC3. These results uncover the improvement in GLUT4 expression and/or the inhibition of HDAC3 as promising therapeutic targets to fight DM-related neurodegeneration.


Assuntos
Diabetes Mellitus , Neuroblastoma , Humanos , Transportador de Glucose Tipo 4 , NF-kappa B/metabolismo , Inflamação , Neurônios/metabolismo , Obesidade
8.
Front Endocrinol (Lausanne) ; 14: 1165415, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229459

RESUMO

Introduction: Insulin resistance in muscle can originate from a sedentary lifestyle, hypercaloric diets, or exposure to endocrine-disrupting pollutants such as arsenic. In skeletal muscle, insulin stimulates glucose uptake by translocating GLUT4 to the sarcolemma. This study aimed to evaluate the alterations induced by sucrose and arsenic exposure in vivo on the pathways involved in insulinstimulated GLUT4 translocation in the quadriceps and gastrocnemius muscles. Methods: Male Wistar rats were treated with 20% sucrose (S), 50 ppm sodium arsenite (A), or both (A+S) in drinking water for 8 weeks. We conducted an intraperitoneal insulin tolerance (ITT) test on the seventh week of treatment. The quadriceps and gastrocnemius muscles were obtained after overnight fasting or 30 min after intraperitoneal insulin injection. We assessed changes in GLUT4 translocation to the sarcolemma by cell fractionation and abundance of the proteins involved in GLUT4 translocation by Western blot. Results: Male rats consuming S and A+S gained more weight than control and Atreated animals. Rats consuming S, A, and A+S developed insulin resistance assessed through ITT. Neither treatments nor insulin stimulation in the quadriceps produced changes in GLUT4 levels in the sarcolemma and Akt phosphorylation. Conversely, A and A+S decreased protein expression of Tether containing UBX domain for GLUT4 (TUG), and A alone increased calpain-10 expression. All treatments reduced this muscle's protein levels of VAMP2. Conversely, S and A treatment increased basal GLUT4 levels in the sarcolemma of the gastrocnemius, while all treatments inhibited insulin-induced GLUT4 translocation. These effects correlated with lower basal levels of TUG and impaired insulin-stimulated TUG proteolysis. Moreover, animals treated with S had reduced calpain-10 protein levels in this muscle, while A and A+S inhibited insulin-induced Akt phosphorylation. Conclusion: Arsenic and sucrose induce systemic insulin resistance due to defects in GLUT4 translocation induced by insulin. These defects depend on which muscle is being analyzed, in the quadriceps there were defects in GLUT4 retention and docking while in the gastrocnemius the Akt pathway was impacted by arsenic and the proteolytic pathway was impaired by arsenic and sucrose.


Assuntos
Arsênio , Resistência à Insulina , Ratos , Masculino , Animais , Insulina/metabolismo , Resistência à Insulina/fisiologia , Calpaína , Músculo Quadríceps , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia , Ratos Wistar , Músculo Esquelético/metabolismo , Transdução de Sinais
9.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37111292

RESUMO

Plantago australis Lam. Subsp. hirtella (Kunth) Rahn is a medicinal plant used as a diuretic, anti-inflammatory, antibacterial, throat cancer treatment and for the control of diabetes. P. australis was collected in the state of Morelos, México. The hydroalcoholic extract (HAEPa) of P. australis was obtained by maceration and concentrated in vacuo. Once dry, it was evaluated through an oral glucose tolerance test (OGTT) in normoglycemic mice and in a non-insulin-dependent diabetic mice model. The expression of PPARγ and GLUT-4 mRNA was determined by rt-PCR, and GLUT-4 translocation was confirmed by confocal microscopy. The toxicological studies were conducted in accordance with the guidelines suggested by the OECD, sections 423 and 407, with some modifications. HAEPa significantly decreased glycemia in OGTT curves, as well as in the experimental diabetes model compared to the vehicle group. In vitro tests showed that HAEPa induced an α-glucosidase inhibition and increased PPARγ and GLUT-4 expression in cell culture. The LD50 of HAEPa was greater than 2000 mg/kg, and sub-chronic toxicity studies revealed that 100 mg/kg/day for 28 days did not generate toxicity. Finally, LC-MS analysis led to the identification of verbascoside, caffeic acid and geniposidic acid, and phytochemical approaches allowed for the isolation of ursolic acid, which showed significant PPARγ overexpression and augmented GLUT-4 translocation. In conclusion, HAEPa induced significant antidiabetic action by insulin sensitization through PPARγ/GLUT-4 overexpression.

10.
Cells ; 11(24)2022 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-36552772

RESUMO

Insulin resistance onset in skeletal muscle is characterized by the impairment of insulin signaling, which reduces the internalization of glucose, known as glucose uptake, into the cell. Therefore, there is a deficit of intracellular glucose, which is the main source for energy production in the cell. This may compromise cellular viability and functions, leading to pathological dysfunction. Skeletal muscle fibers continuously generate reactive oxygen and nitrogen species (RONS). An excess of RONS produces oxidative distress, which may evoke cellular damage and dysfunction. However, a moderate level of RONS, which is called oxidative eustress, is critical to maintain, modulate and regulate cellular functions through reversible interactions between RONS and the components of cellular signaling pathways that control those functions, such as the facilitation of glucose uptake. The skeletal muscle releases peptides called myokines that may have endocrine and paracrine effects. Some myokines bind to specific receptors in skeletal muscle fibers and might interact with cellular signaling pathways, such as PI3K/Akt and AMPK, and facilitate glucose uptake. In addition, there are cytokines, which are peptides produced by non-skeletal muscle cells, that bind to receptors at the plasma membrane of skeletal muscle cells and interact with the cellular signaling pathways, facilitating glucose uptake. RONS, myokines and cytokines might be acting on the same signaling pathways that facilitate glucose uptake in skeletal muscle. However, the experimental studies are limited and scarce. The aim of this review is to highlight the current knowledge regarding the role of RONS, myokines and cytokines as potential signals that facilitate glucose uptake in skeletal muscle. In addition, we encourage researchers in the field to lead and undertake investigations to uncover the fundamentals of glucose uptake evoked by RONS, myokines, and cytokines.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Citocinas/metabolismo , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Músculo Esquelético/metabolismo , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA