Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17085, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048661

RESUMO

The compositional nutrient diagnosis-CND method is a standard tool for evaluating plant nutritional status. Adjustments are crucial to elevate accuracy. The effectiveness of such methodological refinements should be rigorously assessed through accuracy tests that are benchmarked against the prescient diagnostic analysis-PDA methodology. The objective of this investigation was to refine the CND technique for a more precise evaluation of N, P, and B nutrient status in cotton. The study's database encompasses 144 data points pertaining to crop yield and foliar nutrient concentrations from cotton plantations in the Cerrado biome of Brazil. Subsequently, the CND norms were established through rigorous calibration. Three separate nutrient-dose trials, each featuring four levels of N, P and B, were carried out to assess plant true nutritional status. Adjustments were made to the nutrient responsiveness range-NRr (0.5 and 1.0), while yield response-YR were scrutinized at threshold levels (5% and 10%). The prerequisites for achieving high diagnostic accuracy were nutrient specific. For N, maximal accuracy was linked only to the YR parameter (YR = 10%). For P, the most precise outcomes were attained with a NRr = 0.5 and YI = 5%. For B, highest diagnostic accuracy when the NRr = 1.0 and YI = 10%. These insights highlight the need to fine-tune the CND method for reliable nutritional evaluations and cotton crop productivity optimization.


Assuntos
Produtos Agrícolas , Gossypium , Nitrogênio , Gossypium/crescimento & desenvolvimento , Nitrogênio/análise , Nitrogênio/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Fósforo/análise , Fósforo/metabolismo , Brasil
2.
Plants (Basel) ; 13(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38337923

RESUMO

Cotton is one of the most exploited crops in the world, being one of the most important for the Brazilian Northeast. In this region, the use of irrigation is often necessary to meet the water demand of the crop. Water is often used from underground wells that have a large amount of salt in their constitution, which can compromise the development of crops, so it is vital to adopt strategies that reduce salt stress effects on plants, such as the foliar application of hydrogen peroxide. Thus, the objective of this study was to evaluate the effects of foliar application of hydrogen peroxide on the gas exchange, growth, and production of naturally colored cotton under salt stress in the semi-arid region of Paraíba, Brazil. The experiment was carried out in a randomized block design in a 5 × 5 factorial scheme, with five salinity levels of irrigation water-ECw (0.3, 2.0, 3.7, 5.4 and 7.1 dS m-1)-and five concentrations of hydrogen peroxide-H2O2 (0, 25, 50, 75 and 100 µM), and with three replicates. The naturally colored cotton 'BRS Jade' had its gas exchange, growth, biomass production, and production reduced due to the effects of salt stress, but the plants were able to produce up to the ECw of 3.97 dS m-1. Foliar application of hydrogen peroxide at the estimated concentrations of 56.25 and 37.5 µM reduced the effects of salt stress on the stomatal conductance and CO2 assimilation rate of cotton plants under the estimated ECw levels of 0.73 and 1.58 dS m-1, respectively. In turn, the concentration of 12.5 µM increased water-use efficiency in plants subjected to salinity of 2.43 dS m-1. Absolute and relative growth rates in leaf area increased with foliar application of 100 µM of hydrogen peroxide under ECw of 0.73 and 0.3 dS m-1, respectively. Under conditions of low water salinity (0.3 dS m-1), foliar application of hydrogen peroxide stimulated the biomass formation and production components of cotton.

3.
Plant Reprod ; 37(2): 215-227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183442

RESUMO

KEY MESSAGE: Lastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005). Cotton (Gossypium hirsutum L.) is the world's most extensively cultivated fiber crop. However, its reproductive development is poorly characterized at the molecular level. Thus, this study presents a detailed transcriptomic analysis of G. hirsutum at three different reproductive stages. We provide evidence that more than 64,000 genes are active in G. hirsutum during flower development, among which 94.33% have been assigned to functional terms and specific pathways. Gene set enrichment analysis (GSEA) revealed that the biological process categories of floral organ development, pollen exine formation, and stamen development were enriched among the genes expressed during the floral development of G. hirsutum. Furthermore, we identified putative Arabidopsis homologs involved in the G. hirsutum gene regulatory network (GRN) of pollen and flower development, including transcription factors such as WUSCHEL (WUS), INNER NO OUTER (INO), AGAMOUS-LIKE 66 (AGL66), SPOROCYTELESS/NOZZLE (SPL/NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), ABORTED MICROSPORES (AMS), and ASH1-RELATED 3 (ASHR3), which are known crucial genes for plant reproductive success. The cotton MADS-box protein-protein interaction pattern resembles the previously described patterns for AGAMOUS (AG), SEEDSTICK (STK), SHATTERPROOF (SHP), and SEPALLATA3 (SEP3) homolog proteins from Arabidopsis. In addition to serving as a resource for comparative flower development studies, this work highlights the changes in gene expression profiles and molecular networks underlying stages that are valuable for cotton breeding improvement.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Gossypium , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Reprodução/genética , Transcriptoma , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia
4.
BMC Plant Biol ; 23(1): 520, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884892

RESUMO

Studies of boron (B) and silicon (Si) synergy in cotton crops have shown promising results; however, the focus was on the foliar application of B and Si. Nonetheless, B is an element with little mobility in the plant and its best form of application is in the soil. Thus, the objective of this study was to evaluate the synergistic effect of soil applied B and foliar applied sSi on fiber quality and crop yield of cotton. For this purpose, a field experiment was carried out using cotton cultivar FM 985 GLTP. The soil's B in the experimental site is classified as low for cotton cultivation. The experiment was conducted in a randomized complete-block design, in a 3 × 2 factorial scheme, with three doses of B: 0.0 kg ha-1 (deficiency), 2.0 kg ha-1 (recommended dose), and 4.0 kg ha-1 (high dose) in the absence and presence (920 g L-1) of Si, with four replications. One week after the 4th application of Si, B and Si leaf content was determined. At boll opening, crop yield was estimated, and fiber quality analysis was realized. Boron deficiency reduced cotton yield, in 11 and 9%, compared to the application of 2 and 4 kg ha-1 of B, respectively. The presence of Si, however, increased plant yield in 5% in the treatments with 0 and 2 kg ha-1 of B, respectively. Cotton fiber length and elongation were not influenced by the B doses and Si presence. Fiber breaking strength was increased in 5% by the presence of Si and was not influenced by B deficiency. Micronaire was 8% smaller in the treatment with 0 kg ha-1 of B and 6% smaller in the absence of Si. Short fiber index was 4% greater in the plants of the treatment with 0 kg ha-1 of B. The results of this study reports that the complementation with Si via foliar application increases fiber quality by enhance breaking strength and micronaire. In conclusion, the interaction between soil-applied B and foliar-applied Si is beneficial for cotton cultivation, resulting in high cotton yield with better fiber quality.


Assuntos
Fibra de Algodão , Solo , Boro , Silício/farmacologia , Folhas de Planta , Gossypium
5.
Plants (Basel) ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631104

RESUMO

Water scarcity is one of the main abiotic factors that limit agricultural production. In this sense, the identification of genotypes tolerant to water deficit associated with irrigation management strategies is extremely important. In this context, the objective of this study was to evaluate the morphology, production, water consumption, and water use efficiency of colored fiber cotton genotypes submitted to irrigation strategies with a water deficit in the phenological phases. Two experiments were conducted in succession. In the first experiment, a randomized block design was used in a 3 × 7 factorial scheme, corresponding to three colored cotton genotypes (BRS Rubi, BRS Jade, and BRS Safira) in seven irrigation management strategies with 40% of the real evapotranspiration (ETr) varying the phenological stages. In the second experiment, the same design was used in a 3 × 10 factorial arrangement (genotypes × irrigation management strategies). The water deficit in the vegetative phase can be used in the first year of cotton cultivation. Among the genotypes, 'BRS Jade' is the most tolerant to water deficit in terms of phytomass accumulation and fiber production.

6.
Insects ; 14(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37504605

RESUMO

Although the boll weevil (BW), Anthonomus grandis grandis (Coleoptera: Curculionidae) has been attributed to the significant losses caused to cotton yield in the Americas, the categorization as a quarentenary pest in places where it is still not occurring has increased its relevance worldwide. In areas where it is widespread, pest suppression relies on many broad-spectrum insecticide applications. However, other control tactics are sought. Considering that early-flowering cultivars escape from boll weevil infestation, we investigated if three different planting dates (November, December, and January) could alter the plant life cycle, allowing the plants to escape from boll weevil infestation. Field trials were run in two seasons (2014/2015 and 2017/2018), and variables (days required to reach each flowering stage, fruiting plant structures-undamaged and damaged by the BW, and totals-number of boll weevils on plants and that had emerged from fallen structures on the ground) were assessed over 29 and 33 weeks, respectively. Based on the number of days required to initiate and terminate the flowering stage, the time to reach the economic threshold (ET), the number of undamaged, damaged, and the total reproductive structures, we concluded that planting dates in December for the Central Cerrado of Brazil should be preferred over the other two tested dates. Cultivations run at this planting date, anticipating the flowering period initiation and termination, reduced infested flowering structures, and delayed the decision making to control the pest, when compared to the other two planting dates.

7.
Insects ; 14(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37367387

RESUMO

Anthonomus grandis Boheman (Coleoptera: Curculionidae) survives on alternative diets; however, this induces reproductive diapause. The objective was to evaluate the morphology and morphometry of the reproductive tract of this weevil after feeding on alternative diets. The experimental design was completely randomized with 160 replications and treatments arranged in a factorial design 3 × 3, represented by A. grandis adults fed on 3 food types (fragments of banana (T1) or orange (T2) endocarp, or with cotton squares of cultivar BRS 286 (T3, control)) and three evaluation periods (30, 60, and 90 days) and after each of these periods they were fed with cotton squares for 10 days. The reproductive tract of 100% of A. grandis females fed banana endocarp, orange endocarp, and cotton squares for 30 and 60 days and then cotton squares were morphologically adequate for reproduction, and after 90 days, only 50% of those fed cotton squares were in this condition. The length of the ovarioles and the width of the mature oocyte were greater for A. grandis fed on cotton squares and smaller in those with banana and orange endocarps. Histological sections reveal that male testes even with strong degenerative signals are already producing spermatozoa. On the other hand, females displayed ovaries with nurse cells in the tropharium and some maturing oocytes in the vitellarium. The body length was longer and the testis area and diameter smaller in males fed on cotton squares than in those with banana and orange endocarp. Anthonomus grandis females fed for ≥90 days with alternative food sources do not recover the functionality of their reproductive tract, even after consuming, for 10 days, a diet that favors reproduction. On the other hand, the males remain with their reproductive organs functional with this condition.

8.
Plants (Basel) ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299070

RESUMO

Salt stress reduces the yield and quality of colored fiber cotton production, but this problem can be mitigated by the foliar application of hydrogen peroxide in adequate concentrations. In this context, the objective of the present study was to evaluate the production and characteristics of fibers of naturally colored cotton cultivares under irrigation with low- and high-salinity water and leaf application of hydrogen peroxide. The experiment was carried out in a greenhouse under a randomized block design, arranged in 4 × 3 × 2 factorial scheme, corresponding to four concentrations of hydrogen peroxide (0, 25, 50, and 75 µM), three cultivares of colored fiber cotton ('BRS Rubi', 'BRS Topázio', and 'BRS Verde'), and two electrical conductivities of water (0.8 and 5.3 dS m-1), with three replicates and one plant per plot. Irrigation with water of 0.8 dS m-1 associated with a foliar application of 75 µM of hydrogen peroxide favored the lint and seed weight, strength, micronaire index, and maturity of 'BRS Topázio'. The 'BRS Rubi' cotton cultivar showed higher tolerance to salinity, followed by the 'BRS Topázio' and 'BRS Verde' cultivares regarding the yield of seed cotton weight, with reduction below 20% under water of 5.3 dS m-1.

9.
Semina ciênc. agrar ; 44(1): 147-170, jan.-fev. 2023. graf, ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1418815

RESUMO

The use of saline waters in irrigated agriculture has become a reality in several regions of the world. However, this practice may cause limitations to growth and development, depending on the tolerance level of the crop. Applying strategies that minimize salt stress in crops is therefore essential, and, in this respect, salicylic acid can act as an antioxidant and enhance the plant's tolerance to salt stress. The objective of this study was to examine the effects of foliar application of salicylic acid on the physiology and production components of naturally colored cotton cv. BRS Jade grown under salt stress. The plants were cultivated on lysimeters in outdoor conditions at the Agro-Food Science and Technology Center, Federal University of Campina Grande, located in Pombal - PB, Brazil. The experiment was laid out in a randomized block design with a 5 × 5 factorial arrangement consisting of five irrigation-water electrical conductivity levels (ECw: 0.3, 1.8, 3.3, 4.8, and 6.3 dS m-1) and five concentrations of salicylic acid (SA: 0, 1.5, 3.0, 4.5, and 6.0 mM), with three replicates. Irrigation with water with salinity levels from 0.3 dS m-1 reduced gas exchange, the synthesis of photosynthetic pigments, and the number of bolls in cotton cv. BRS Jade. Salinity levels from 0.3 dS m-1induced stomatal closure and reduced transpiration, CO2 assimilation rate, the levels of photosynthetic pigments, and production components of cotton cv. BRS Jade. The salicylic acid concentrations of 2.6 and 2.7 mM increased CO2 assimilation rate and stomatal conductance, respectively, in the cotton plants. Foliar application of salicylic acid did not mitigate the effects of salt stress on gas exchange, the synthesis of photosynthetic pigments, or production components of cotton.


O uso de águas salinas na agricultura irrigada vem se tornando uma realidade em diversas regiões do mundo, entretanto, dependendo do nível de tolerância da cultura ocorrem limitações no crescimento e desenvolvimento. Dessa forma, o uso das estratégias que minimizem o estresse salino nas culturas é fundamental, nesta perspectiva, o ácido salicílico pode atuar como antioxidante e contribuir na tolerância das plantas ao estresse salino. Neste sentido, objetivou-se avaliar os efeitos da aplicação foliar de ácido salicílico na fisiologia e nos componentes de produção do algodoeiro naturalmente colorido cv. BRS Jade cultivado sob estresse salino. As plantas foram conduzidas em lisímetros sob condições de céu aberto, no Centro de Ciências e Tecnologia Agroalimentar pertencente à Universidade Federal de Campina Grande, Pombal-PB. O delineamento utilizado foi em blocos casualizados, em esquema fatorial 5 × 5, sendo cinco níveis de condutividade elétrica da água de irrigação - CEa (0,3; 1,8; 3,3; 4,8 e 6,3 dS m-1) e cinco concentrações de ácido salicílico - AS (0; 1,5; 3,0, 4,5 e 6,0 mM) com três repetições. A irrigação com água a partir de 0,3 dS m-1 reduziu as trocas gasosas, a síntese de pigmentos fotossintéticos e o número de capulhos do algodoeiro cv. BRS Jade. A irrigação com água a partir de 0,3 dS m-1 induziu o fechamento estomático e diminuiu a transpiração, a taxa de assimilação de CO2, os teores de pigmentos fotossintéticos e os componentes de produção do algodoeiro cv. BRS Jade. As concentrações de ácido salicílico de 2,6 e 2,7 mM proporcionaram aumento na taxa de assimilação de CO2 e condutância estomática, respectivamente, das plantas de algodão. A aplicação foliar de ácido salicílico não amenizou os efeitos do estresse salino sobre as trocas gasosas, a síntese de pigmentos fotossintéticos e os componentes de produção do algodoeiro.


Assuntos
Ácido Salicílico/administração & dosagem , Gossypium/efeitos dos fármacos , Gossypium/fisiologia , Estresse Salino
10.
Phytochemistry ; 205: 113454, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36244403

RESUMO

Cultivated plants of Gossypium hirsutum Cav. (cotton) consistently emit low levels of volatile organic compounds, primarily mono- and sesquiterpenoids, which are produced and stored in pigment glands. In this study, we provide a comprehensive evaluation of the terpene profiles of wild G. hirsutum plants sourced from sites located throughout natural distribution of this species, thus providing the first in-depth assessment of the scope of its intraspecific chemotypic diversity. Chemotypic variation can potentially influence resistance to herbivory and diseases, or interact with abiotic stress such as extreme temperatures. Under controlled environmental conditions, plants were grown from seeds of sixteen G. hirsutum populations collected along the coastline of the Yucatan Peninsula, which is its likely centre of origin. We found high levels of intraspecific diversity in the terpene profiles of the plants. Two distinct chemotypes were identified: one chemotype contained higher levels of the monoterpenes γ-terpinene, limonene, α-thujene, α-terpinene, terpinolene, and p-cymene, while the other chemotype was distinguished by higher levels of α- and ß-pinene. The distribution of chemotypes followed a geographic gradient from west to east, with an increasing frequency of the former chemotype. Concurrent analysis of maternal plants revealed that chemotypes in wild G. hirsutum are highly heritable.


Assuntos
Gossypium , Terpenos , Gossypium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA