Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1335898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659646

RESUMO

Human Embryonic Kidney cells (HEK293) are a popular host for recombinant protein expression and production in the biotechnological industry. This has driven within both, the scientific and the engineering communities, the search for strategies to increase their protein productivity. The present work is inserted into this search exploring the impact of adding sodium acetate (NaAc) into a batch culture of HEK293 cells. We monitored, as a function of time, the cell density, many external metabolites, and the supernatant concentration of the heterologous extra-cellular domain ECD-Her1 protein, a protein used to produce a candidate prostate cancer vaccine. We observed that by adding different concentrations of NaAc (0, 4, 6 and 8 mM), the production of ECD-Her1 protein increases consistently with increasing concentration, whereas the carrying capacity of the medium decreases. To understand these results we exploited a combination of experimental and computational techniques. Metabolic Flux Analysis (MFA) was used to infer intracellular metabolic fluxes from the concentration of external metabolites. Moreover, we measured independently the extracellular acidification rate and oxygen consumption rate of the cells. Both approaches support the idea that the addition of NaAc to the culture has a significant impact on the metabolism of the HEK293 cells and that, if properly tuned, enhances the productivity of the heterologous ECD-Her1 protein.

2.
Biomedicines ; 11(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38002050

RESUMO

In a previous work, we proposed a vaccine chimeric antigen based on the fusion of the SARS-CoV-2 N protein to the extracellular domain of the human CD40 ligand (CD154). This vaccine antigen was named N-CD protein and its expression was carried out in HEK-293 stably transfected cells, grown in adherent conditions and serum-supplemented medium. The chimeric protein obtained in these conditions presented a consistent pattern of degradation. The immunization of mice and monkeys with this chimeric protein was able to induce a high N-specific IgG response with only two doses in pre-clinical experiments. In order to explore ways to diminish protein degradation, in the present work, the N and N-CD proteins were produced in suspension cultures and serum-free media following transient transfection of the HEK-293 clone 3F6, at different scales, including stirred-tank controlled bioreactors. The results showed negligible or no degradation of the target proteins. Further, clones stably expressing N-CD were obtained and adapted to suspension culture, obtaining similar results to those observed in the transient expression experiments in HEK-293-3F6. The evidence supports transient protein expression in suspension cultures and serum-free media as a powerful tool to produce in a short period of time high levels of complex proteins susceptible to degradation, such as the SARS-CoV-2 N protein.

3.
Data Brief ; 50: 109604, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37808545

RESUMO

The data for provide evidences of the multi steady state of the human cell line HEK 293 was obtained from 2 L bioreactor continuous culture. A HEK 293 cell line transfected to produce soluble HER1 receptor was used. The bioreactor was operated at three different dilution rates in sequential manner. Daily samples of culture broth were collected, a total of 85 samples were processed. Viable cell concentration and culture viability was addressing by trypan blue exclusion method using a hemocytometer. Heterologous HER1 supernatant concentration was quantified by a specific ELISA and the metabolites by mass spectrometry coupled to a liquid chromatography. The primary data were collected in excel files, where it was calculated the kinetic and other variables by using mass balance and mathematical principles. It was compared the steady states behavior each other's to find out the existence of steady states' multiplicity, taking into account the stationary phase with respect to the cell density (which means its coefficient of variation is less than 20 %). From the metabolic measurements by using Liquid Chromatography coupled to mass spectrometry (LC-MS), it was also built the data matrix with the specific rates of the 76 metabolites obtained. The data were processed and analyzed, using multivariate data asssnalysis (MVDA) to reduce the complexity and to find the main patterns present in the data. We describe also the full data of the metabolites not only for steady states but also in the time evolution, which could help others in terms of modeling and deep understanding of HEK293 metabolism, especially under different culture conditions.

4.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445771

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser129 (p-Ser129α-Syn). Unfortunately, no curative treatment is available yet. To aggravate matters further, the etiopathogenesis of the disorder is still unresolved. However, the neurotoxin rotenone (ROT) has been implicated in PD. Therefore, it has been widely used to understand the molecular mechanism of neuronal cell death. In the present investigation, we show that ROT induces two convergent pathways in HEK-293 cells. First, ROT generates H2O2, which, in turn, either oxidizes the stress sensor protein DJ-Cys106-SH into DJ-1Cys106SO3 or induces the phosphorylation of the protein LRRK2 kinase at residue Ser395 (p-Ser395 LRRK2). Once active, the kinase phosphorylates α-Syn (at Ser129), induces the loss of mitochondrial membrane potential (ΔΨm), and triggers the production of cleaved caspase 3 (CC3), resulting in signs of apoptotic cell death. ROT also reduces glucocerebrosidase (GCase) activity concomitant with the accumulation of lysosomes and autophagolysosomes reflected by the increase in LC3-II (microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate II) markers in HEK-293 cells. Second, the exposure of HEK-293 LRRK2 knockout (KO) cells to ROT displays an almost-normal phenotype. Indeed, KO cells showed neither H2O2, DJ-1Cys106SO3, p-Ser395 LRRK2, p-Ser129α-Syn, nor CC3 but displayed high ΔΨm, reduced GCase activity, and the accumulation of lysosomes and autophagolysosomes. Similar observations are obtained when HEK-293 LRRK2 wild-type (WT) cells are exposed to the inhibitor GCase conduritol-ß-epoxide (CBE). Taken together, these observations imply that the combined development of LRRK2 inhibitors and compounds for recovering GCase activity might be promising therapeutic agents for PD.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Rotenona/farmacologia , Rotenona/metabolismo , Células HEK293 , Peróxido de Hidrogênio/metabolismo , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Lisossomos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
5.
Appl Microbiol Biotechnol ; 107(11): 3429-3441, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093307

RESUMO

Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.


Assuntos
COVID-19 , ISCOMs , Humanos , Camundongos , Animais , Vacinas contra COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , SARS-CoV-2 , Complexo Antígeno-Anticorpo , Pandemias/prevenção & controle , Células HEK293 , Anticorpos Antivirais , Anticorpos Neutralizantes , Adjuvantes Imunológicos , Hidróxido de Alumínio
6.
Elife ; 122023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695566

RESUMO

Voltage-dependent gating of the voltage-gated proton channels (HV1) remains poorly understood, partly because of the difficulty of obtaining direct measurements of voltage sensor movement in the form of gating currents. To circumvent this problem, we have implemented patch-clamp fluorometry in combination with the incorporation of the fluorescent non-canonical amino acid Anap to monitor channel opening and movement of the S4 segment. Simultaneous recording of currents and fluorescence signals allows for direct correlation of these parameters and investigation of their dependence on voltage and the pH gradient (ΔpH). We present data that indicate that Anap incorporated in the S4 helix is quenched by an aromatic residue located in the S2 helix and that motion of the S4 relative to this quencher is responsible for fluorescence increases upon depolarization. The kinetics of the fluorescence signal reveal the existence of a very slow transition in the deactivation pathway, which seems to be singularly regulated by ΔpH. Our experiments also suggest that the voltage sensor can move after channel opening and that the absolute value of the pH can influence the channel opening step. These results shed light on the complexities of voltage-dependent opening of human HV1 channels.


Assuntos
Ativação do Canal Iônico , Prótons , Humanos , Ativação do Canal Iônico/fisiologia , Aminoácidos
7.
Mol Cell Biochem ; 478(5): 1117-1128, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36222986

RESUMO

In cancer, the Epithelial to Mesenchymal Transition (EMT) is the process in which epithelial cells acquire mesenchymal features that allow metastasis, and chemotherapy resistance. Growth hormone (GH) has been associated with melanoma, breast, and endometrial cancer progression through an autocrine regulation of EMT. Since exogenous and autocrine expression of GH is known to have different molecular effects, we investigated whether exogenous GH is capable of regulating the EMT of cancer cells. Furthermore, we investigated whether exogenous GH could promote EMT in non-cancerous cells. To study the effect of GH (100 ng/ml) on cancer and non-cancer cells, we used HeLa and HEK293 cell lines, respectively. We evaluated the loss of cell-cell contacts, by cell scattering assay and migration by wound-healing assay. Additionally, we evaluated the morphological changes by phalloidin-staining. Finally, we evaluated the molecular markers E-cadherin and vimentin by flow cytometry. GH enhances cell scattering and the migratory rate and promotes morphological changes such as cell area increase and actin cytoskeleton filaments formation on HeLa cell line. Moreover, we found that GH favors the expression of the mesenchymal protein vimentin, followed by an increase in E-cadherin's epithelial protein expression, characteristics of an epithelial-mesenchymal hybrid phenotype that is associated with metastasis. On HEK293cells, GH promotes morphological changes, including cell area increment and filopodia formation, but not affects scattering, migration, nor EMT markers expression. Our results suggest that exogenous GH might participate in cervical cancer progression favoring a hybrid EMT phenotype but not on non-cancerous HEK293 cells.


Assuntos
Transição Epitelial-Mesenquimal , Hormônio do Crescimento , Humanos , Células HeLa , Células HEK293 , Hormônio do Crescimento/farmacologia , Vimentina , Linhagem Celular Tumoral , Caderinas/metabolismo , Fatores de Transcrição , Movimento Celular
8.
Metab Brain Dis ; 38(2): 519-529, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36029429

RESUMO

Mucopolysaccharidosis type II (MPS II or Hunter Syndrome) is a lysosomal disease caused by deficient degradation of glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate due to the deficiency of the enzyme iduronate-2-sulfatase. The main treatment for MPS II is the administration of the recombinant form of the enzyme, in a process known as enzyme replacement therapy (ERT). Oxidative damage can contribute to the pathophysiology of MPS II and treatment with ERT can reduce the effects of oxidative stress. For a better understanding of pathophysiology of MPS II, we evaluated biomarkers of mitochondrial dysfunction, DNA (Deoxyribonucleic acid) damage, antioxidant defenses, reactive species production and lysosomal size in IDS-deficient HEK 293 cells and investigate the in vitro effect of genistein and coenzyme Q10 (CoQ) on these biomarkers. An increase in the production of reactive species was demonstrated, as well as an increase in the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, an increase in lysosomal volume and oxidative damage to DNA were verified. There was no evidence of a change in mitochondrial function in this cell model. In the HEK 293 (human embryonic kidney 293) knockout (KO) HP10 cell model we found that genistein at concentrations of 25 and 50 µm decreased in vitro the production of reactive species and the activity of the SOD enzyme, showing an antioxidant protective effect. Still, in these cells we verified that the coenzyme Q10 in the concentrations of 5 and 10 µm decreased in vitro the activity of the SOD enzyme and in the concentration of 10 µm decreased in vitro the DNA damage, also demonstrating antioxidant protection. In conclusion, MPS II knockout cells demonstrated oxidative stress and DNA damage and genistein, as well as coenzyme Q10, have been shown to have an important protective effect in vitro against these oxidative damages.


Assuntos
Mucopolissacaridose II , Humanos , Mucopolissacaridose II/tratamento farmacológico , Genisteína/farmacologia , Células HEK293 , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Glicosaminoglicanos/metabolismo , Mitocôndrias/metabolismo , Biomarcadores/metabolismo , Superóxido Dismutase/metabolismo
9.
Appl Microbiol Biotechnol ; 106(24): 8121-8137, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36401641

RESUMO

Human stem cell factor (hSCF) is an early-acting growth factor that promotes proliferation, differentiation, migration, and survival in several tissues. It plays a crucial role in hematopoiesis, gametogenesis, melanogenesis, intestinal motility, and in development and recovery of nervous and cardiovascular systems. Potential therapeutic applications comprise anemia treatment, mobilization of hematopoietic stem/progenitor cells to peripheral blood, and increasing gene transduction efficiency for gene therapy. Developing new tools to characterize recombinant hSCF in most native-like form as possible is crucial to understand the complexity of its in vivo functions and for improving its biotechnological applications. The soluble domain of hSCF was expressed in HEK293 cells. Highly purified rhSCF showed great molecular mass variability due to the presence of N- and O-linked carbohydrates, and it presented a 2.5-fold increase on proliferative activity compared to bacteria-derived hSCF. Three hybridoma clones producing monoclonal antibodies (mAbs) with high specificity for the glycoprotein were obtained. 1C4 and 2D3 mAbs were able to detect bacteria-derived and glycosylated rhSCF and demonstrated to be excellent candidates to develop a sandwich ELISA assay for rhSCF quantification, with detection limits of 0.18 and 0.07 ng/ml, respectively. Interestingly, 1A10 mAb only recognized glycosylated rhSCF, suggesting that sugar moieties might be involved in epitope recognition. 1A10 mAb showed the highest binding affinity, and it constituted the best candidate for immunodetection of the entire set rhSCF glycoforms in western blot assays, and for intracellular cytokine staining. Our work shows that combining glycosylated rhSCF expression with hybridoma technology is a powerful strategy to obtain specific suitable immunochemical assays and thus improve glycoprotein-producing bioprocesses. KEY POINTS: • Soluble glycosylated human SCF exerted improved proliferative activity on UT-7 cells. • Three mAbs with high specificity targeting glycosylated human SCF were obtained. • mAbs applications comprise sandwich ELISA, western blot, and immunofluorescence assays.


Assuntos
Anticorpos Monoclonais , Glicoproteínas , Hibridomas , Fator de Células-Tronco , Humanos , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Biotecnologia , Glicoproteínas/imunologia , Células HEK293 , Fator de Células-Tronco/análise , Fator de Células-Tronco/imunologia , Glicosilação , Ensaio de Imunoadsorção Enzimática , Western Blotting
10.
Cytotherapy ; 24(8): 850-860, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643755

RESUMO

BACKGROUND AIMS: Lentiviral vectors (LVs) have been used extensively in gene therapy protocols because of their high biosafety profile and capacity to stably express a gene of interest. Production of these vectors for the generation of chimeric antigen receptor (CAR) T cells in academic and research centers is achieved using serum-supplemented static monolayer cultures. Although efficient for pre-clinical studies, this method has a number of limitations. The main hurdles are related to its incompatibility with robust and controlled large-scale production. For this reason, cell suspension culture in bioreactors is desirable. Here the authors report the transition of LV particle production from serum-supplemented monolayer to serum-free suspension culture with the objective of generating CAR T cells. METHODS: A self-inactivating LV anti-CD19 CAR was produced by transient transfection using polyethylenimine (PEI) in human embryonic kidney 293 T cells previously adapted to serum-free suspension culture. RESULTS: LV production of 8 × 106 transducing units (TUs)/mL was obtained in serum-supplemented monolayer culture. LV production in the serum-free suspension conditions was significantly decreased compared with monolayer production. Therefore, optimization of the transfection protocol was performed using design of experiments. The results indicated that the best condition involved the use of 1 µg of DNA/106 cells, 1 × 106 cells/mL and PEI:DNA ratio of 2.5:1. This condition used less DNA and PEI compared with the standard, thereby reducing production costs. This protocol was further improved with the addition of 5 mM of sodium butyrate and resulted in an increase in production, with an average of 1.5 × 105 TUs/mL. LV particle functionality was also assessed, and the results indicated that in both conditions the LV was capable of inducing CAR expression and anti-tumor response in T cells, which in turn were able to identify and kill CD19+ cells in vitro. CONCLUSIONS: This study demonstrates that the transition of LV production from small-scale monolayer culture to scalable and controllable bioreactors can be quite challenging and requires extensive work to obtain satisfactory production.


Assuntos
Lentivirus , Receptores de Antígenos Quiméricos , Linfócitos T , Técnicas de Cultura de Células/métodos , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA