Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947670

RESUMO

Nanomaterials such as titanium dioxide and magnetite are increasingly used in several fields, such as water remediation and agriculture. However, this has raised environmental concerns due to potential exposure to organisms like humans. Nanomaterials can cause adverse interactions depending on physicochemical characteristics, like size, morphology, and composition, when interacting with living beings. To ensure safe use and prevent the risk of exposure to nanomaterials, their biocompatibility must be assessed. In vitro cell cultures are beneficial for assessing nanomaterial-cell interactions due to their easy handling. The present study evaluated the biocompatibility of TiO2, Fe3O4, and TiO2/Fe3O4 nanomaterials thermally treated at 350 °C and 450 °C in erythrocytes and HepG2 cells. According to the hemolysis experiments, non-thermally treated NMs are toxic (>5% hemolysis), but their thermally treated counterparts do not present toxicity (<2%). This behavior indicates that the toxicity derives from some precursor (solvent or surfactant) used in the synthesis of the nanomaterials. All the thermally treated nanomaterials did not show hemolytic activity under different conditions, such as low-light exposure or the absence of blood plasma proteins. In contrast, non-thermally treated nanomaterials showed a high hemolytic behavior, which was reduced after the purification (washing and thermal treatment) of nanomaterials, indicating the presence of surfactant residue used during synthesis. An MTS cell viability assay shows that calcined nanomaterials do not reduce cell viability (>11%) during 24 h of exposure. On the other hand, a lactate dehydrogenase leakage assay resulted in a higher variability, indicating that several nanomaterials did not cause an increase in cell death as compared to the control. However, a holotomographic microscopy analysis reveals a high accumulation of nanomaterials in the cell structure at a low concentration (10 µg mL-1), altering cell morphology, which could lead to cell membrane damage and cell viability reduction.

2.
Int J Parasitol ; 51(8): 643-658, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753093

RESUMO

Bovine babesiosis is a tick-borne disease caused by apicomplexan parasites of the Babesia genus that represents a major constraint to livestock production worldwide. Currently available vaccines are based on live parasites which have archetypal limitations. Our goal is to identify candidate antigens so that new and effective vaccines against Babesia may be developed. The perforin-like protein (PLP) family has been identified as a key player in cell traversal and egress in related apicomplexans and it was also identified in Babesia, but its function in this parasite remains unknown. The aim of this work was to define the PLP family in Babesia and functionally characterize PLP1, a representative member of the family in Babesia bovis. Bioinformatic analyses demonstrate a variable number of plp genes (four to eight) in the genomes of six different Babesia spp. and conservation of the family members at the secondary and tertiary structure levels. We demonstrate here that Babesia PLPs contain the critical domains present in other apicomplexan PLPs to display the lytic capacity. We then focused on the functional characterization of PLP1 of B. bovis, both in vitro and in vivo. PLP1 is expressed and exposed to the host immune system during infection and has high hemolytic capacity under a wide range of conditions in vitro. A B. bovis plp1 knockout line displayed a decreased growth rate in vitro compared with the wild type strain and a peculiar phenotype consisting of multiple parasites within a single red blood cell, although at low frequency. This phenotype suggests that the lack of PLP1 has a negative impact on the mechanism of egression of the parasite and, therefore, on its capacity to proliferate. It is possible that PLP1 is associated with other proteins in the processes of invasion and egress, which were found to have redundant mechanisms in related apicomplexans. Future work will be focused on unravelling the network of proteins involved in these essential parasite functions.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Parasitos , Animais , Babesia bovis/genética , Bovinos , Perforina
3.
Nat Prod Res ; 35(22): 4494-4501, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32178533

RESUMO

In our previous work, lupeol was isolated from aerial parts of V. scorpioides and modified by semisynthetic approach. The purpose of this study was to investigate the cytotoxicity of lupeol and its derivatives previously prepared on the human K562 acute myeloid leukemia cell and human Jurkat acute lymphoid leukemia cell in vitro. Compounds 3ß-hydroxylup-20(29)-en-30-al (2), lup-20(30)-en-3ß,29-diol (3), 3ß-acetoxylup-20(29)-en-30-al (5) and 3ß-acetoxy-30-hydroxylup-20(29)-ene (6) presented cytotoxicity with IC50 ranging from 11.72 to 56.15 µM at 24 h of incubation for both cell lines. Most of the active compounds (3, 5 and 6) were selective to leukemia cells, in compare with healthy cells. The hemolysis assay showed high blood compatibility of the cytotoxic lupeol derivatives which makes possible an intravenous administration of these compounds aiming to the potential to development of anti-leukemic drugs.


Assuntos
Extratos Vegetais , Humanos , Células Jurkat , Triterpenos Pentacíclicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA