Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292947

RESUMO

The presence of insoluble aggregates of amyloid ß (Aß) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer's disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aß peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aß peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer's disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Metabolismo dos Lipídeos , Metabolismo Basal , Fragmentos de Peptídeos/metabolismo , Colinérgicos , Lipídeos
2.
Front Immunol ; 13: 820131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251001

RESUMO

Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.


Assuntos
Tratamento Farmacológico da COVID-19 , Regulação para Baixo/efeitos dos fármacos , Inflamação/tratamento farmacológico , Microdomínios da Membrana/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Sinvastatina/farmacologia , Animais , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Inflamação/virologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Replicação Viral/efeitos dos fármacos
3.
Front Cell Infect Microbiol ; 11: 698662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368017

RESUMO

Scedosporium and Lomentospora species are filamentous fungi responsible for a wide range of infections in humans and are frequently associated with cystic fibrosis and immunocompromising conditions. Because they are usually resistant to many antifungal drugs available in clinical settings, studies of alternative targets in fungal cells and therapeutic approaches are necessary. In the present work, we evaluated the in vitro antifungal activity of miltefosine against Scedosporium and Lomentospora species and how this phospholipid analogue affects the fungal cell. Miltefosine inhibited different Scedosporium and Lomentospora species at 2-4 µg/ml and reduced biofilm formation. The loss of membrane integrity in Scedosporium aurantiacum caused by miltefosine was demonstrated by leakage of intracellular components and lipid raft disorganisation. The exogenous addition of glucosylceramide decreased the inhibitory activity of miltefosine. Reactive oxygen species production and mitochondrial activity were also affected by miltefosine, as well as the susceptibility to fluconazole, caspofungin and myoricin. The data obtained in the present study contribute to clarify the dynamics of the interaction between miltefosine and Scedosporium and Lomentospora cells, highlighting its potential use as new antifungal drug in the future.


Assuntos
Ascomicetos , Scedosporium , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Fosforilcolina/análogos & derivados
4.
Colloids Surf B Biointerfaces ; 205: 111889, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34098365

RESUMO

The composition of Langmuir monolayers used as cell membrane models is an essential factor for the interaction with biologically-relevant molecules, including pharmaceutical drugs. In this paper, we report the modulation of effects from the antineoplastic drug paclitaxel by the relative concentration of cholesterol in the Langmuir monolayers of ternary mixtures of dipalmitoylphosphatidylcholine, sphingomyelin, and cholesterol. Since the dependence on cholesterol concentration for these monolayers simulating lipid rafts is non-monotonic, we analyzed the surface pressure and compressibility modulus data with the multidimensional projection technique referred to as interactive document mapping (IDMAP). The maximum expansion induced by paclitaxel in surface pressure isotherms was observed for 27% cholesterol, while the compressibility modulus decreased most strongly for the monolayer with 48% cholesterol. Therefore, the physiological action of paclitaxel may vary depending on whether it is associated with penetration in the membrane or with changes in the membrane elasticity.


Assuntos
1,2-Dipalmitoilfosfatidilcolina , Paclitaxel , Membrana Celular , Colesterol , Membranas Artificiais , Esfingomielinas
5.
Front Immunol ; 12: 796855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975904

RESUMO

Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-ß-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.


Assuntos
COVID-19/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Humanos , Hidroxicloroquina/farmacologia , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/fisiologia , Internalização do Vírus/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
6.
J Mol Graph Model ; 101: 107732, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920240

RESUMO

n-Aliphatic alcohols act as anesthetics only up to a certain chain length, beyond which its biological activity disappears. This is known as the 'cut-off' phenomenon. Although the most accepted explanation is based on action sites in membrane proteins, it is not well understood why alcohols alter their functions. The structural dependence of these protein receptors to lipid domains known as 'lipid rafts', suggests a new approach to tackle the puzzling phenomenon. In this work, by performing molecular dynamic simulations (MDS) to explore the lipid role, we provide relevant molecular details about the membrane-alcohol interaction at the cut-off point regime. Since the high variability of the cut-off points found on protein receptors in neurons may be a consequence of differences in the lipid composition surrounding such proteins, our results could have a clear-cut importance.


Assuntos
Álcoois , Anestésicos , Lipídeos , Microdomínios da Membrana , Simulação de Dinâmica Molecular
7.
Front Pharmacol ; 11: 636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477123

RESUMO

Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.

8.
Colloids Surf B Biointerfaces ; 193: 111017, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32408264

RESUMO

Langmuir monolayers have been used as cell membrane models, where lipid composition is normally varied to mimic distinct types of membranes. For eukaryotic membranes, for instance, rather than using only zwitterionic phospholipids there is now a trend to employ mixtures to simulate the lipid rafts known to be relevant for various cellular processes. In this study, we demonstrate that effects from chitosans on Langmuir monolayers are considerably higher if lipid raft compositions (ternary mixtures of dipalmitoyl phosphatidyl choline (DPPC), sphingomyelin (SM) and cholesterol) are used. Significantly, measurable effects on the surface pressure isotherms start at 10-6 mg mL-1 for chitosans in lipid rafts, to be compared with 10-2 mg mL-1 for neat dipalmitoyl phosphatidylcholine (DPPC). This applies to both a commercial chitosan and chitosans soluble at physiological pH. Incorporation of these chitosans in the raft monolayers was confirmed in polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) experiments, where both the tail groups and headgroups were found to interact with chitosan. Since the effects on membrane models may be observed at such small concentrations for chitosans and probably other molecules, some studies may have to be revisited where neat phospholipids should be replaced by lipid raft compositions.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular/química , Quitosana/química , Colesterol/química , Esfingomielinas/química , Animais , Decapodiformes , Modelos Moleculares
9.
Mem. Inst. Oswaldo Cruz ; 115: e190398, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1091238

RESUMO

BACKGROUND Streptococcus agalactiae capsular type III strains are a leading cause of invasive neonatal infections. Many pathogens have developed mechanisms to escape from host defense response using the host membrane microdomain machinery. Lipid rafts play an important role in a variety of cellular functions and the benefit provided by interaction with lipid rafts can vary from one pathogen to another. OBJECTIVES This study aims to evaluate the involvement of membrane microdomains during infection of human endothelial cell by S. agalactiae. METHODS The effects of cholesterol depletion and PI3K/AKT signaling pathway activation during S. agalactiae-human umbilical vein endothelial cells (HUVEC) interaction were analysed by pre-treatment with methyl-β-cyclodextrin (MβCD) or LY294002 inhibitors, immunofluorescence and immunoblot analysis. The involvement of lipid rafts was analysed by colocalisation of bacteria with flotillin-1 and caveolin-1 using fluorescence confocal microscopy. FINDINGS In this work, we demonstrated the importance of the integrity of lipid rafts microdomains and activation of PI3K/Akt pathway during invasion of S. agalactiae strain to HUVEC cells. Our results suggest the involvement of flotillin-1 and caveolin-1 during the invasion of S. agalactiae strain in HUVEC cells. CONCLUSIONS The collection of our results suggests that lipid microdomain affects the interaction of S. agalactiae type III belonging to the hypervirulent ST-17 with HUVEC cells through PI3K/Akt signaling pathway.


Assuntos
Humanos , Recém-Nascido , Streptococcus agalactiae/patogenicidade , Virulência , Microdomínios da Membrana/virologia , Células Endoteliais/virologia , Lipídeos de Membrana , Streptococcus agalactiae/genética
10.
Front Pharmacol, v. 11, 636, mai. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3070

RESUMO

Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA