Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
HardwareX ; 19: e00553, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39099722

RESUMO

To continue sleep research activities during the lockdown resulting from the COVID-19 pandemic, experiments that were previously conducted in laboratories were shifted to the homes of volunteers. Furthermore, for extensive data collection, it is necessary to use a large number of portable devices. Hence, to achieve these objectives, we developed a low-cost and open-source portable monitor (PM) device capable of acquiring electroencephalographic (EEG) signals using the popular ESP32 microcontroller. The device operates based on instrumentation amplifiers. It also has a connectivity microcontroller with Wi-Fi and Bluetooth that can be used to stream EEG signals. This portable single-channel 3-electrode EEG device allowed us to record short naps and score different sleep stages, such as wakefulness, non rapid eye movement sleep (NREM), stage 1 (S1), stage 2 (S2), stage 3 (S3) and stage 4 (S4). We validated the device by comparing the obtained signals to those generated by a research-grade counterpart. The results showed a high level of accurate similarity between both devices, demonstrating the feasibility of using this approach for extensive and low-cost data collection of EEG sleep recordings.

2.
HardwareX ; 19: e00557, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39108458

RESUMO

Spectral signatures allow the characterization of a surface from the reflected or emitted energy along the electromagnetic spectrum. This type of measurement has several potential applications in precision agriculture. However, capturing the spectral signatures of plants requires specialized instruments, either in the field or the laboratory. The cost of these instruments is high, so their incorporation in crop monitoring tasks is not massive, given the low investment in agricultural technology. This paper presents a low-cost clamp to capture spectral leaf signatures in the laboratory and the field. The clamp can be 3D printed using PLA (polylactic acid); it allows the connection of 2 optical fibers: one for a spectrometer and one for a light source. It is designed for ease of use and holds a leave firmly without causing damage, allowing data to be collected with less disturbance. The article compares signatures captured directly using a fiber and the proposed clamp; noise reduction across the spectrum is achieved with the clamp.

3.
Sci Rep ; 14(1): 19057, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154070

RESUMO

The present work deals with developing a method for revalorizing steel residues to create sunlight-active photocatalysts based on iron oxides. Commercial-grade steel leftovers are oxidized under different combinations of pH and temperature (50-90 °C and 3 ≥ pH ≤ 5) in a low energy-intensive setup. The material with the highest production efficiency (yield > 12%) and magnetic susceptibility (χm = 387 × 10-6 m3/kg) was further explored and modified by diffusion of M2+ (Zn and Co) ions within the structure of the oxide using a hydrothermal method to create ZnFe2O4, CoFe2O4 and combined Co-Zn ferrite. (Co-Zn)Fe2O4 displayed a bandgap of 2.02 eV and can be activated under sunlight irradiation. Electron microscopy studies show that (Co-Zn)Fe2O4 consists of particles with diameters between 400 and 700 nm, homogeneous size, even distribution, and good dispersibility. Application of the developed materials in the sunlight catalysis of black liquors from cellulose extraction resulted in a reduction of the Chemical Oxygen Demand (- 15% on average) and an enhancement in biodegradability (> 0.57 BOD/COD) after 180 min of reaction. Since the presented process employs direct solar light, it opens the possibility to large-scale water treatment and chemical upgrading applications.

4.
Int J Biometeorol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115564

RESUMO

The application of innovative systems using low-cost microcontrollers in human biometeorology studies is a promising alternative to conventional monitoring devices, which are usually cost-intensive and provide measurements at specific points, as in stationary meteorological stations. A Portable Low-cost Environmental Monitoring System (PLEMS) aimed at the pedestrian scale is introduced. The backpack-type equipment consists of a microcontroller with attached sensors that assess environmental conditions in a broad sense, integrating measurements of air quality, lighting and noise levels alongside variables typically measured at meteorological stations. The application of the system took place in altogether 12 environmental walks carried out with questionnaire-surveys with concurrent environmental monitoring with the PLEMS in Curitiba, Brazil, a subtropical location characterized by a Cfb climate type. Results allowed us to test the equipment and method of data gathering within a limited period (approximately 50 min) and for a short walking circuit of 800 m. The equipment was successfully able to capture even slightest differences in environmental conditions among points of interest, whereas subjective responses (n= 3843 responses to a total of 11 questions) showed consistency with measured data. From a multi-domain perspective, relevant insights could be obtained for the measured variables.

5.
Rev. colomb. cir ; 39(4): 544-549, Julio 5, 2024. fig
Artigo em Espanhol | LILACS | ID: biblio-1563023

RESUMO

Introducción. Anudar es una de las habilidades quirúrgicas esenciales y de su correcta ejecución dependen procesos de vital importancia. La adquisición de estas competencias requiere trabajo motor, entornos amigables y realistas. Una estrategia para facilitar el aprendizaje de la técnica de anudado es generar instrumentos de simulación accesibles. Métodos. Se presenta un simulador de nudos quirúrgicos, construido con materiales de bajo costo y asequibles para la población en general, con un presupuesto de aproximadamente $5.000 COP (US$ 1,23). Resultados. Se desarrolló un simulador de nudos quirúrgicos que, al fijarse a la extremidad inferior desde una posición sentada, proporciona una superficie estable para llevar a cabo la práctica de anudado de manera efectiva. Conclusión. La cirugía moderna considera la seguridad del paciente como la principal prioridad, por lo que ya no es apropiado adoptar un método de formación de "ver uno, hacer uno, enseñar uno". Es la práctica constante mediante simuladores, el método más adecuado. Este trabajo presenta una alternativa de aprendizaje ininterrumpido de las técnicas quirúrgicas relacionadas con los nudos.


Introduction. Knotting is one of the essential surgical skills and vitally important processes that depends on its correct execution. The acquisition of these skills requires motor work, friendly and realistic environments. A strategy to facilitate learning the knotting technique is to generate accessible simulation instruments. Methods. A surgical knot simulator is presented, built with low-budget materials and affordable for the general population, with a budget of approximately $5,000 COP (US$ 1.23). Results. A surgical knot simulator has been developed in a way that, when attached to the thigh of a lower extremity from a seated position, provides a stable surface to effectively perform knot tying practice. Conclusion. Modern surgery considers patient safety as the top priority, so it is no longer appropriate to adopt a "see one, do one, teach one" training method. Constant practice using simulators is the most appropriate method. This work presents an alternative for uninterrupted learning of surgical techniques related to knots.


Assuntos
Humanos , Cirurgia Geral , Materiais de Ensino , Exercício de Simulação , Tecnologia de Baixo Custo , Educação de Pós-Graduação em Medicina , Educação de Graduação em Medicina
6.
Micromachines (Basel) ; 15(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39064443

RESUMO

Microfluidic separators play a pivotal role in the biomedical and chemical industries by enabling precise fluid manipulations. Traditional fabrication of these devices typically requires costly cleanroom facilities, which limits their broader application. This study introduces a novel microfluidic device that leverages the passive Zweifach-Fung principle to overcome these financial barriers. Through Lagrangian computational simulations, we optimized an eleven-channel Zweifach-Fung configuration that achieved a perfect 100% recall rate for particles following a specified normal distribution. Experimental evaluations determined 2 mL/h as the optimal total flow rate (TFR), under which the device showcased exceptional performance enhancements in precision and recall for micrometer-sized particles, achieving an overall accuracy of 94% ± 3%. Fabricated using a cost-effective, non-cleanroom method, this approach represents a significant shift from conventional practices, dramatically reducing production costs while maintaining high operational efficacy. The cost of each chip is less than USD 0.90 cents and the manufacturing process takes only 15 min. The development of this device not only makes microfluidic technology more accessible but also sets a new standard for future advancements in the field.

7.
Environ Monit Assess ; 196(8): 716, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980517

RESUMO

Low-cost sensors integrated with the Internet of Things can enable real-time environmental monitoring networks and provide valuable water quality information to the public. However, the accuracy and precision of the values measured by the sensors are critical for widespread adoption. In this study, 19 different low-cost sensors, commonly found in the literature, from four different manufacturers are tested for measuring five water quality parameters: pH, dissolved oxygen, oxidation-reduction potential, turbidity, and temperature. The low-cost sensors are evaluated for each parameter by calculating the error and precision compared to a typical multiparameter probe assumed as a reference. The comparison was performed in a controlled environment with simultaneous measurements of real water samples. The relative error ranged from - 0.33 to 33.77%, and most of them were ≤ 5%. The pH and temperature were the ones with the most accurate results. In conclusion, low-cost sensors are a complementary alternative to quickly detect changes in water quality parameters. Further studies are necessary to establish a guideline for the operation and maintenance of low-cost sensors.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Concentração de Íons de Hidrogênio , Temperatura , Poluentes Químicos da Água/análise , Oxigênio/análise
8.
Artigo em Inglês | MEDLINE | ID: mdl-39016241

RESUMO

OBJECTIVE: To evaluate the utility of low-cost simulation models to teach surgical techniques for placenta accreta spectrum (PAS), included in a multimodal education workshop for PAS. METHODS: This was an observational, survey-based study. Participants were surveyed before and after the use of low-fidelity mannequins to simulate two surgical techniques for PAS (one-step conservative surgery [OSCS] and modified subtotal hysterectomy [MSTH]), within a multimodal educational workshop. The workshops included pre-course preparation, didactics, simulated practice of the techniques using low-cost models, and viewing live surgery. RESULTS: Six OSCS/MSTH training workshops occurred across six countries and a total of 270 participants were surveyed. The responses of 127 certified obstetricians and gynecologists (OB-GYNs) were analyzed. Participants expressed favorable impressions of all components of the simulated session. Perceived anatomical simulator fidelity, scenario realism, educational component effectiveness, and self-assessed performance improvement received ratings of 4-5 (positive end of the Likert scale) from over 90% of respondents. When asked about simulation's role in technique comprehension, comfort level in technique performance, and likelihood of recommending this workshop to others, more than 75% of participants rated these aspects with a score of 4-5 (positively) on the five-point scale. CONCLUSION: Low-cost simulation, within a multimodal education strategy, is a well-accepted intervention for teaching surgical techniques for PAS.

9.
Water Sci Technol ; 89(9): 2240-2253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747947

RESUMO

The banana tree circle (BTC) is a low-cost system for local greywater management, using a natural treatment and disposal process, providing additional resource recovery benefits. However, there are no standard design criteria for BTC that would allow for quality control of its efficiency and sustainability, and little is currently known about the full-scale performance of BTC. Based on the scoping literature review of 31 documents in the scientific database and eight documents from grey literature, a standard design model was proposed for the BTC technology based on the concept of water balance, greywater flows, rain, infiltration, and evapotranspiration. The first two steps of the BTC design were determining the areas required for infiltration and evapotranspiration. A cylindrical form trench, the soil percolation rate, and the hydraulic loading rate were considered for the infiltration area. The banana trees' evapotranspiration rate was taken into consideration for the evapotranspiration area. The proposed model was applied in a case study where we used a trench with 0.8 m depth and 1.5 m diameter. This study proposes a standard design criterion for the BTC based on environmental factors, and the scoping of the literature provides the basis for future studies to evaluate its environmental sustainability.


Assuntos
Modelos Teóricos , Musa , Conservação dos Recursos Naturais/métodos , Eliminação de Resíduos Líquidos/métodos , Árvores
10.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732833

RESUMO

In developing nations, outdated technologies and sulfur-rich heavy fossil fuel usage are major contributors to air pollution, affecting urban air quality and public health. In addition, the limited resources hinder the adoption of advanced monitoring systems crucial for informed public health policies. This study addresses this challenge by introducing an affordable internet of things (IoT) monitoring system capable of tracking atmospheric pollutants and meteorological parameters. The IoT platform combines a Bresser 5-in-1 weather station with a previously developed air quality monitoring device equipped with Alphasense gas sensors. Utilizing MQTT, Node-RED, InfluxDB, and Grafana, a Raspberry Pi collects, processes, and visualizes the data it receives from the measuring device by LoRa. To validate system performance, a 15-day field campaign was conducted in Santa Clara, Cuba, using a Libelium Smart Environment Pro as a reference. The system, with a development cost several times lower than Libelium and measuring a greater number of variables, provided reliable data to address air quality issues and support health-related decision making, overcoming resource and budget constraints. The results showed that the IoT architecture has the capacity to process measurements in tropical conditions. The meteorological data provide deeper insights into events of poorer air quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA