Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1410863, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903186

RESUMO

Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.

2.
Braz J Microbiol ; 55(2): 1393-1404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676790

RESUMO

Helicobacter pylori is the most common cause of gastroduodenal diseases. The concept that cagA-positive H. pylori is a risk factor for gastric cancer appears to be true only for H. pylori strains from Western countries. Other virulent genes may have a synergistic interaction with cagA during pathogenesis. This study aims to investigate H. pylori cagA, vacA, and iceA prevalence, genotypes, and their association to clinical outcomes in Vietnamese patients. The cagA status and vacA and iceA genotypes were determined using the PCR technique on DNA extracted from gastric biopsies of 141 patients with gastroduodenal diseases. After performing molecular analysis for cagA, vacA, and iceA genes, samples with mixed H. pylori strains, positivity, or negativity for both cagA and cagPAI-empty site, or unidentified genotypes were excluded. Finally, 107 samples were examined. The presence of the cagA, vacA, and iceA genes were detected in 77.6%, 100%, and 80.4% of cases, respectively. Notably, cagA( +) with EPIYA-ABD, vacA s1i1m1, vacA s1i1m2, iceA1, and iceA2 accounted for 73.8%, 44.9%, 33.6%, 48.6%, and 31.8% of cases, respectively. Four iceA2 subtypes (24-aa, 59-aa, 94-aa, and 129-aa variants) were found, with the 59-aa variant the most prevalent (70.6%). The cagA( +)/vacAs1i1m1/iceA1 and cagA( +)/vacAs1i1m2/iceA1 combinations were found in 26.2% and 25.1% of cases, respectively. A multivariable logistic regression analysis was performed, after adjusting for age and gender, with the gastritis group was used as a reference control. Statistically significant associations were found between the vacA s1i1m2 genotype, the iceA1 variant, and the cagA( +)/vacAs1i1m2/iceA1 combination and gastric cancer; the adjusted ORs were estimated as 18.02 (95% CI: 3.39-95.81), 4.09 (95% CI: 1.1-15.08), and 16.19 (95% CI: 3.42-76.66), respectively. Interestingly, for the first time, our study found that vacA s1i1m2, but not vacA s1i1m1, was a risk factor for gastric cancer. This study illustrates the genetic diversity of the H. pylori cagA, vacA, and iceA genes across geographical regions and contributes to understanding the importance of these genotypes for clinical outcomes.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Genótipo , Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/classificação , Helicobacter pylori/patogenicidade , Vietnã/epidemiologia , Antígenos de Bactérias/genética , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/epidemiologia , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Proteínas da Membrana Bacteriana Externa/genética , Idoso , Adulto Jovem , Prevalência , Fatores de Virulência/genética
3.
Immunol Invest ; 53(1): 70-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981469

RESUMO

INTRODUCTION: Research in tumor treatment has shown promising results using extracellular vesicles (EVs) derived from immune cells. EVs derived from M1 macrophages (proinflammatory), known as M1-EVs, have properties that suppress tumor growth, making them a promising treatment tool for immune susceptible tumors such as melanoma. Here, small unaltered M1-EVs (M1-sEVs) were employed in a 3D mouse melanoma model (melanospheres) to evaluate such activity. METHODS: Macrophages were polarized and EVs were isolated by ultracentrifugation. The EVs obtained were characterized based on size, with measurements performed by dynamic light scattering and electron microscopy, and the expression profiles of microRNAs were analyzed by microarray and PCR. Melanospheres were used to evaluate the cytotoxicity of M1-sEVs. Pondering a possible future transposition from the animal model to the human, human melanoma cells were transfected with a specific miRNA, and the impact on cell proliferation was evaluated. RESULTS: The isolated EVs showed a size distribution between 50-400 nm in diameter, but preeminently in a range of 70-90 nm. M1-sEVs demonstrated a remarkable ability to reduce cell proliferation and viability in the melanospheres, leading to a decrease in their volume. M1-sEVs contained unique miRNAs, including miR-29a-3p, which exhibited significant antitumor activities according to bioinformatics analysis. Validation of the antitumor effects of miR-29a-3p was obtained by a functional evaluation, i.e., by inducing miRNA overexpression in human melanoma cells (SK-MEL-28). CONCLUSION: Although further research would be advisable, the study provides evidence supporting the potential of M1-sEVs and their miRNA load as a possible targeted immune therapy for melanoma.


Assuntos
Vesículas Extracelulares , Melanoma , MicroRNAs , Animais , Humanos , Camundongos , Melanoma/terapia , Modelos Animais de Doenças , Macrófagos , MicroRNAs/genética
4.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958514

RESUMO

The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatias , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Anti-Inflamatórios/uso terapêutico , Hepatopatias/metabolismo , Fenótipo , Mediadores da Inflamação/metabolismo
5.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003447

RESUMO

Acute ST-elevation myocardial infarction (STEMI) leads to myocardial injury or necrosis, and M1 macrophages play an important role in the inflammatory response. Bone marrow mesenchymal stem/stromal cells (BM-MSCs) are capable of modulating macrophage plasticity, principally due to their immunoregulatory capacity. In the present study, we analyzed the capacity of MSCs to modulate macrophages derived from monocytes from patients with STEMI. We analyzed the circulating levels of cytokines associated with M1 and M2 macrophages in patients with STEMI, and the levels of cytokines associated with M1 macrophages were significantly higher in patients with STEMI than in controls. BM-MSCs facilitate the generation of M1 and M2 macrophages. M1 macrophages cocultured with MSCs did not have decreased M1 marker expression, but these macrophages had an increased expression of markers of the M2 macrophage phenotype (CD14, CD163 and CD206) and IL-10 and IL-1Ra signaling-induced regulatory T cells (Tregs). M2 macrophages from patients with STEMI had an increased expression of M2 phenotypic markers in coculture with BM-MSCs, as well as an increased secretion of anti-inflammatory cytokines and an increased generation of Tregs. The findings in this study indicate that BM-MSCs have the ability to modulate the M1 macrophage response, which could improve cardiac tissue damage in patients with STEMI.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Fenótipo , Células-Tronco Mesenquimais/metabolismo
6.
Front Immunol ; 14: 1244071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662946

RESUMO

During Trypanosoma cruzi infection, macrophages phagocytose parasites and remove apoptotic cells through efferocytosis. While macrophage 1 (M1) produces proinflammatory cytokines and NO and fights infection, M2 macrophages are permissive host cells that express arginase 1 and play a role in tissue repair. The regulation of M1 and M2 phenotypes might either induce or impair macrophage-mediated immunity towards parasite control or persistence in chronic Chagas disease. Here, we highlight a key role of macrophage activation in early immune responses to T. cruzi that prevent escalating parasitemia, heart parasitism, and mortality during acute infection. We will discuss the mechanisms of macrophage activation and deactivation, such as T cell cytokines and efferocytosis, and how to improve macrophage-mediated immunity to prevent parasite persistence, inflammation, and the development of chagasic cardiomyopathy. Potential vaccines or therapy must enhance early T cell-macrophage crosstalk and parasite control to restrain the pathogenic outcomes of parasite-induced inflammation in the heart.


Assuntos
Doença de Chagas , Macrófagos , Humanos , Citocinas , Inflamação , Apoptose
7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446007

RESUMO

Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.


Assuntos
Acetamidas , Antagonistas do Receptor A2 de Adenosina , Polaridade Celular , Fatores Quimiotáticos , Nefropatias Diabéticas , Glomérulos Renais , Macrófagos , Purinas , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Fatores Quimiotáticos/antagonistas & inibidores , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Receptor A2B de Adenosina , Acetamidas/farmacologia , Purinas/farmacologia , Animais , Ratos , Movimento Celular/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética
8.
Clinics (Sao Paulo) ; 78: 100228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418797

RESUMO

OBJECTIVE: The aim of this study was to evaluate the best timing and feasibility of intrathecal application of sodium monosialoganglioside (GM1) after spinal cord contusion in Wistar rats as an experimental model. METHODS: Forty Wistar rats were submitted to contusion spinal cord injury after laminectomy. The animals were randomized and divided into four groups: Group 1 - Intrathecal application of GM1 24 hours after contusion; Group 2 - Intrathecal application of GM1 48 hours after contusion; Group 3 - intrathecal application of GM1 72 hours after contusion; Group 4 - Sham, with laminectomy and intrathecal application of 0.5 mL of 0.9% saline solution, without contusion. The recovery of locomotor function was evaluated at seven different moments by the Basso, Beattie, and Bresnahan (BBB) test. They were also assessed by the horizontal ladder, with sensory-motor behavioral assessment criteria, pre-and postoperatively. RESULTS: This experimental study showed better functional scores in the group submitted to the application of GM1, with statistically significant results, showing a mean increase when evaluated on known motor tests like the horizontal ladder and BBB, at all times of evaluation (p < 0.05), especially in group 2 (48 hours after spinal cord injury). Also, fewer mistakes and slips over the horizontal ladder were observed, and many points were achieved at the BBB scale analysis. CONCLUSION: The study demonstrated that the intrathecal application of GM1 after spinal cord contusion in Wistar rats is feasible. The application 48 hours after the injury presented the best functional results.


Assuntos
Contusões , Traumatismos da Medula Espinal , Ratos , Animais , Ratos Wistar , Gangliosídeo G(M1) , Recuperação de Função Fisiológica , Medula Espinal , Modelos Animais de Doenças
9.
Pharmaceutics ; 15(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37376103

RESUMO

The development of biomaterial platforms for dispensing reagents of interest such as antioxidants, growth factors or antibiotics based on functional hydrogels represents a biotechnological solution for many challenges that the biomedicine field is facing. In this context, in situ dosing of therapeutic components for dermatological injuries such as diabetic foot ulcers is a relatively novel strategy to improve the wound healing process. Hydrogels have shown more comfort for the treatment of wounds due to their smooth surface and moisture, as well as their structural affinity with tissues in comparison to hyperbaric oxygen therapy, ultrasound, and electromagnetic therapies, negative pressure wound therapy or skin grafts. Macrophages, one of the most important cells of the innate immune system, have been described as the key not only in relation to the host immune defense, but also in the progress of wound healing. Macrophage dysfunction in chronic wounds of diabetic patients leads to a perpetuating inflammatory environment and impairs tissue repair. Modulating the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) could be a strategy for helping to improve chronic wound healing. In this regard, a new paradigm is found in the development of advanced biomaterials capable of inducing in situ macrophage polarization to offer an approach to wound care. Such an approach opens a new direction for the development of multifunctional materials in regenerative medicine. This paper surveys emerging hydrogel materials and bioactive compounds being investigated to induce the immunomodulation of macrophages. We propose four potential functional biomaterials for wound healing applications based on novel biomaterial/bioactive compound combination that are expected to show synergistic beneficial outcomes for the local differentiation of macrophages (M1-M2) as a therapeutic strategy for chronic wound healing improvement.

10.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176162

RESUMO

Thalassophryne nattereri toadfish (niquim) envenomation, common in the hands and feet of bathers and fishermen in the north and northeast regions of Brazil, is characterized by local symptoms such as immediate edema and intense pain. These symptoms progress to necrosis that lasts for an extended period of time, with delayed healing. Wound healing is a complex process characterized by the interdependent role of keratinocytes, fibroblasts, and endothelial and innate cells such as neutrophils and macrophages. Macrophages and neutrophils are actively recruited to clear debris during the inflammatory phase of wound repair, promoting the production of pro-inflammatory mediators, and in the late stage, macrophages promote tissue repair. Our hypothesis is that injury caused by T. nattereri venom (VTn) leads to senescent wounds. In this study, we provide valuable information about the mechanism(s) behind the dysregulated inflammation in wound healing induced by VTn. We demonstrate in mouse paws injected with the venom the installation of γH2AX/p16Ink4a-dependent senescence with persistent neutrophilic inflammation in the proliferation and remodeling phases. VTn induced an imbalance of M1/M2 macrophages by maintaining a high number of TNF-α-producing M1 macrophages in the wound but without the ability to eliminate the persistent neutrophils. Chronic neutrophilic inflammation and senescence were mediated by cytokines such as IL-1α and IL-1ß in a caspase-1- and caspase-11-dependent manner. In addition, previous blocking with anti-IL-1α and anti-IL-ß neutralizing antibodies and caspase-1 (Ac YVAD-CMK) and caspase-11 (Wedelolactone) inhibitors was essential to control the pro-inflammatory activity of M1 macrophages induced by VTn injection, skewing towards an anti-inflammatory state, and was sufficient to block neutrophil recruitment and senescence.


Assuntos
Venenos de Peixe , Peçonhas , Camundongos , Animais , Venenos de Peixe/farmacologia , Inflamassomos , Inflamação/induzido quimicamente , Neutrófilos , Caspase 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA