Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39065715

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 expression. It is known for its high malignancy, invasiveness, and propensity for metastasis, resulting in a poor prognosis due to the absence of beneficial therapeutic targets. Natural products derived from mushrooms have gained significant attention in neoplastic therapy due to their potential medicinal properties. The therapeutic potential of Ganoderma lucidum in breast cancer has been highlighted by our group, suggesting its use as an adjuvant treatment. The present study aims to assess the potential antineoplastic capacity of two Caribbean native Ganoderma species found in Puerto Rico, Ganoderma multiplicatum (G. multiplicatum) and Ganoderma martinicense (G. martinicense). Antiproliferative studies were conducted via cell viability assays after cultivation, harvesting, and fractionation of both species. The obtained results indicate that most of the fractions show some cytotoxicity against all cell lines, but 33% of the fractions (F1, F2, F7, F12) display selectivity towards cancer cell models. We demonstrate for the first time that native Ganoderma species can generate metabolites with anti-TNBC properties. Future avenues will focus on structure elucidation of the most active fractions of these Ganoderma extracts.

2.
Cell Biol Int ; 48(9): 1354-1363, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38894528

RESUMO

Ecto-5'-nucleotidase (CD73) hydrolyses 5'AMP to adenosine and inorganic phosphate. Breast cancer cells (MDA-MB-231) express high CD73 levels, and this enzyme has been found to play a tumour-promoting role in breast cancer. However, no studies have sought to investigate whether CD73 has differential affinity or substrate preferences between noncancerous and cancerous breast cells. In the present study, we aimed to biochemically characterise ecto-5'-nucleotidase in breast cancer cell lines and assess whether its catalytic function and tumour progression are correlated in breast cancer cells. The results showed that compared to nontumoral breast MCF-10A cells, triple-negative breast cancer MDA-MB-231 cells had a higher ecto-5'-nucleotidase expression level and enzymatic activity. Although ecto-5'-nucleotidase activity in the MDA-MB-231 cell line showed no selectivity among monophosphorylated substrates, 5'AMP was preferred by the MCF-10A cell line. Compared to the MCF-10A cell line, the MDA-MB-231 cell line has better hydrolytic ability, lower substrate affinity, and high inhibitory potential after treatment with a specific CD73 inhibitor α,ß­methylene ADP (APCP). Therefore, we demonstrated that a specific inhibitor of the ecto-5-nucleotidase significantly reduced the migratory and invasive capacity of MDA-MB-231 cells, suggesting that ecto-5-nucleotidase activity might play an important role in metastatic progression.


Assuntos
5'-Nucleotidase , Neoplasias de Mama Triplo Negativas , Humanos , 5'-Nucleotidase/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Movimento Celular , Adenosina/metabolismo , Adenosina/análogos & derivados
3.
J Cell Commun Signal ; 16(4): 531-546, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34309795

RESUMO

Insulin-like growth factor-1 (IGF-1) plays an important role in function and development of the mammary gland. However, high levels of IGF-1 has been associated with an increased risk of breast cancer development. Epithelial-mesenchymal transition (EMT) is a process where epithelial cells lose their epithelial characteristics and acquire a mesenchymal phenotype, which is considered one of the most important mechanisms in cancer initiation and promotion of metastasis. Extracellular vesicles (EVs) are released into the extracellular space by different cell types, which mediate intercellular communication and play an important role in different physiological and pathological processes, such as cancer. In this study, we demonstrate that EVs from MDA-MB-231 breast cancer cells stimulated with IGF-1 (IGF-1 EVs) decrease the levels of E-cadherin, increase the expression of vimentin and N-cadherin and stimulate the secretion of metalloproteinase-9 in mammary non-tumorigenic epithelial cells MCF10A. IGF-1 EVs also induce the expression of Snail1, Twist1 and Sip1, which are transcription factors involved in EMT. Moreover, IGF-1 EVs induce activation of ERK1/2, Akt1 and Akt2, migration and invasion. In summary, we demonstrate, for the first time, that IGF-1 EVs induce an EMT process in mammary non-tumorigenic epithelial cells MCF10A.

4.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684736

RESUMO

Podophyllotoxins are natural lignans with known cytotoxic activity on several cell lines. The structural basis for their actions is mainly by the aryltetralin-lignan skeleton. Authors have proposed a cytotoxic mechanism of podophyllotoxins through the topoisomerase-II inhibition activity; however, several studies have also suggested that podophyllotoxins can inhibit the microtubules polymerization. In this work, the two possible mechanisms of action of two previously isolated compounds from the stem bark of Bursera fagaroides var. fagaroides: acetylpodophyllotoxin (1) and 5'-desmethoxydeoxypodophyllotoxin (2), was analyzed. An in vitro anti-tubulin epifluorescence on the MCF10A cell line and enzymatic topoisomerase II assays were performed. The binding affinities of compounds 1 and 2 in the colchicine binding site of tubulin by using rigid- and semiflexible-residues were calculated and compared using in silico docking methods. The two lignans were active by the in vitro anti-tubulin assay but could not inhibit TOP2 activity. In the in silico analysis, the binding modes of compounds into both rigid- and semiflexible-residues of tubulin were predicted, and only for the semiflexible docking method, a linear correlation between the dissociation constant and IC50 previously reported was found. Our results suggest that a simple semiflexible-residues modification in docking methods could provide an in vitro correlation when analyzing very structurally similar compounds.


Assuntos
Lignanas/química , Podophyllum/toxicidade , Tubulina (Proteína)/metabolismo , Sítios de Ligação , Bursera/metabolismo , Bursera/fisiologia , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Lignanas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Podofilotoxina/farmacologia , Tubulina (Proteína)/efeitos dos fármacos
5.
Cells ; 9(4)2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331276

RESUMO

The ß-blocker propranolol (PROP) has been proposed as a repurposed treatment for breast cancer. The similarity of action between ß-agonists and antagonists found on breast cells encouraged us to compare PROP and isoproterenol (ISO, agonist) signaling pathways on a human breast cell line. Cell proliferation was measured by cell counting and DNA-synthesis. Cell adhesion was measured counting the cells that remained adhered to the plastic after different treatments. Changes in actin cytoskeleton were observed by fluorescence staining and Western Blot. ISO and PROP caused a diminution of cell proliferation and an increase of cell adhesion, reverted by the pure ß-antagonist ICI-118551. ISO and PROP induced a reorganization of actin cytoskeleton increasing F-actin, p-COFILIN and p-LIMK. While ISO elicited a marked enhancement of cAMP concentrations and an increase of vasodilator-stimulated phosphoprotein (VASP) and cAMP response element-binding protein (CREB) phosphorylation, PROP did not. Clathrin-mediated endocytosis inhibition or ß-arrestin1 dominant-negative mutant abrogated PROP-induced cell adhesion and COFILIN phosphorylation. The fact that PROP has been proposed as an adjuvant drug for breast cancer makes it necessary to determine the specific action of PROP in breast models. These results provide an explanation for the discrepancies observed between experimental results and clinical evidence.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Mama/citologia , Propranolol/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/biossíntese , Feminino , Humanos , Isoproterenol/farmacologia , Quinases Lim/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
6.
Technol Cancer Res Treat ; 18: 1533033819870823, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31431135

RESUMO

Successful therapies for patients with breast cancer often lose their initial effectiveness. Thus, identifying new molecular targets is a constant goal in the fight against breast cancer. Gpn3 is a protein required for RNA polymerase II nuclear targeting in both yeast and human cells. We investigated here the effect of suppressing Gpn3 expression on cell proliferation in a progression series of isogenic cell lines derived from the nontumorigenic MCF-10A breast cells that recapitulate different stages of breast carcinogenesis. Gpn3 protein levels were comparable in all malignant derivatives of the nontumorigenic MCF-10A cells. shRNA-mediated inhibition of Gpn3 expression markedly decreased cell proliferation in all MCF-10A sublines. A fraction of the largest RNA polymerase II subunit Rpb1 was retained in the cytoplasm, but most Rpb1 remained nuclear after suppressing Gpn3 in all cell lines studied. Long-term proliferation experiments in cells with suppressed Gpn3 expression resulted in the eventual loss of all isogenic cell lines but MCF-10CA1d.cl1. In MCF-10CA1d.cl1 cells, Gpn3 knockdown reduced the proliferation of breast cancer stem cells as evaluated by mammosphere assays. After the identification that Gpn3 plays a key role in cell proliferation in mammary epithelial cells independent of the degree of transformation, we also analyzed the importance of Gpn3 in other human breast cancer cell lines from different subtypes. Gpn3 was also required for cell proliferation and nuclear translocation of RNA polymerase II in such cellular models. Altogether, our results show that Gpn3 is essential for breast cancer cell proliferation regardless of the transformation level, indicating that Gpn3 could be considered a molecular target for the development of new antiproliferative therapies. Importantly, our analysis of public data revealed that Gpn3 overexpression was associated with a significant decrease in overall survival in patients with estrogen receptor-positive and Human epidermal growth factor receptor 2 (HER2+) breast cancer, supporting our proposal that targeting Gpn3 could potentially benefit patients with breast cancer.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , GTP Fosfo-Hidrolases/genética , Receptor ErbB-2/genética , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Intervalo Livre de Doença , Células Epiteliais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
7.
J Cell Commun Signal ; 13(2): 235-244, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30361980

RESUMO

In breast cancer cells, the linoleic acid (LA), an ω-6 essential polyunsaturated fatty acid, induces a variety of biological processes, including migration and invasion. Extracellular vesicles (EVs) are structures released by normal and malignant cells into extracellular space, and their function is dependent on their cargo and the cell type from which are secreted. Particularly, the EVs from MDA-MB-231 breast cancer cells treated with LA promote an epithelial-mesenchymal-transition (EMT)-like process in mammary non-tumorigenic epithelial cells MCF10A. Here, we found that EVs isolated from supernatants of MDA-MB-231 breast cancer cells stimulated with 90 µM LA induces activation of Akt2, FAK and ERK1/2 in MCF10A cells. In addition, EVs induces migration through a PI3K, Akt and ERK1/2-dependent pathway, whereas invasion is dependent on PI3K activity.

8.
Curr Top Med Chem ; 18(17): 1465-1474, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30129412

RESUMO

BACKGROUND: Breast cancer is a major cause of death among women worldwide. Treatment for breast cancer involves the surgical removal of cancer tissue, followed by chemotherapy. Although the treatment is efficient, especially when the cancer is detected early, recurrence is common and is often resistant to the previous treatment. Therefore, a constant search for efficient and novel drugs for the treatment of breast cancer is mandatory. Recently, triazole derivatives have shown promising effects against different types of cancer, revealing these molecules as putative anticancer drugs. EXPERIMENTAL: We have synthesized a series of naphthotriazolyl-4-oxoquinoline derivatives and tested their activity against a human breast cancer cell line. Among the compounds tested, we identified a molecule that killed the human breast cancer cell line MCF-7 with minimal effects on its noncancer counterpart, MCF10A. This effect was seen after 24 hours of treatment and persisted for additional 24 hours after treatment withdrawal. After 1 hour of treatment, the compound, here named 12c, promoted a decrease in cell glucose consumption and lactate production. Moreover, the cells treated with 12c for 1 hour showed diminished intracellular ATP levels with unaltered mitochondrial potential and increased reactive oxygen species production. Additionally, apoptosis was triggered after treatment with the drug for 1 hour. All of these effects are only observed with MCF-7 cells, and not MCF10A. These data show that 12c has selective activity against breast cancer cells and is a potential candidate for a novel anticancer drug. RESULTS AND CONCLUSION: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields, and one of them, 12c, exhibited strong and selective antitumor properties. The antitumor mechanism involves inhibition of glycolysis, diminished intracellular ATP levels, induction of ROS production and triggering of apoptosis. These effects are all selective for cancer cells, since noncancer cells are unaffected, and these effects can only be attributed to the whole molecule, as different pharmacophoric groups did not reproduce these effects.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Quinolonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 19(1)2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29300307

RESUMO

Natural products represent a source of biologically active molecules that have an important role in drug discovery. The aromatic plant Blepharocalyx salicifolius has a diverse chemical constitution but the biological activities of its essential oils have not been thoroughly investigated. The aims of this paper were to evaluate in vitro cytotoxic, antifungal and antibacterial activities of an essential oil from leaves of B. salicifolius and to identify its main chemical constituents. The essential oil was extracted by steam distillation, chemical composition was determined by gas chromatography/mass spectrometry, and biological activities were performed by a microdilution broth method. The yield of essential oil was 0.86% (w/w), and the main constituents identified were bicyclogermacrene (17.50%), globulol (14.13%), viridiflorol (8.83%), γ-eudesmol (7.89%) and α-eudesmol (6.88%). The essential oil was cytotoxic against the MDA-MB-231 (46.60 µg·mL-1) breast cancer cell line, being more selective for this cell type compared to the normal breast cell line MCF-10A (314.44 µg·mL-1). Flow cytometry and cytotoxicity results showed that this oil does not act by inducing cell death, but rather by impairment of cellular metabolism specifically of the cancer cells. Furthermore, it presented antifungal activity against Paracoccidioides brasiliensis (156.25 µg·mL-1) but was inactive against other fungi and bacteria. Essential oil from B. salicifolius showed promising biological activities and is therefore a source of molecules to be exploited in medicine or by the pharmaceutical industry.


Assuntos
Myrtaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Testes de Sensibilidade Microbiana , Folhas de Planta/química
10.
J Cell Biochem ; 119(5): 4061-4071, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29236310

RESUMO

Diabetes mellitus has been related with an increased risk of breast cancer, whereas it has been suggested that links between diabetes mellitus and cancer are hyperinsulinemia, insulin resistance, hyperglycemia, and chronic inflammation induced by adipose tissue. Contribution of hyperinsulinemia to carcinogenesis is mediated through resistance to endogenous insulin and by exogenous insulin used in treatment. Epithelial to mesenchymal transition (EMT) is a process by which epithelial cells are transdifferentiated to a mesenchymal state that has been implicated in cancer progression. However, the role of insulin in EMT process has not been studied in detail. In the present study, we demonstrate that insulin induces downregulation of E-cadherin expression, accompanied with an increase of N-cadherin and vimentin expression, and an increase of MMP-2 and -9 secretions. Insulin also induces FAK activation, an increase of NFκB DNA binding activity, migration, and invasion of mammary non-tumorigenic epithelial cells MCF10A. In addition, migration requires the activity of insulin receptors and insulin-like growth factor receptor 1 (IGF1R). In summary, our results demonstrate that insulin induces an EMT-like process in MCF10A cells.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Insulina/farmacologia , Glândulas Mamárias Humanas/metabolismo , Linhagem Celular , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA