Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Steroids ; 205: 109392, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452910

RESUMO

We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12ß-hydroxyandrostenedione 1b and 1ß-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.


Assuntos
Antineoplásicos , Penicillium , Antineoplásicos/metabolismo , Cladosporium/metabolismo , Fungos/metabolismo , Oxigenases de Função Mista/metabolismo , Penicillium/metabolismo , Progesterona/metabolismo
2.
Braz J Microbiol ; 54(3): 1983-2000, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37402057

RESUMO

Marine-derived fungi have attracted much attention due to their ability to present a new biosynthetic diversity. About 50 fungal isolates were obtained from Tunisian Mediterranean seawater and then screened for the presence of lignin-peroxidase (LiP), manganese-dependent peroxidase (MnP), and laccase (Lac) activities. The results obtained from both qualitative and quantitative assays showed that four of marine fungi isolates had a high potential to produce lignin-degrading enzymes. They were characterized taxonomically by a molecular method, based on international spacer (ITS) rDNA sequence analysis, as Chaetomium jodhpurense (MH667651.1), Chaetomium maderasense (MH665977.1), Paraconiothyrium variabile (MH667653.1), and Phoma betae (MH667655.1) which have been reported as producers of ligninolytic enzyme in the literature. The enzymatic activities and culture conditions were optimized using a Fractional Factorial design (2 7- 4). Then, fungal strains were incubated with the addition of 1% of crude oil in 50% of seawater for 25 days to evaluate their abilities to simultaneously degrade hydrocarbon compounds and to produce ligninolytic enzymes. The strain P. variabile exhibited the highest crude oil degradation rate (48.3%). Significant production of ligninolytic enzymes was recorded during the degradation process, which reached 2730 U/L for the MnP, 410 U/L for LiP, and 168.5 U/L for Lac. The FTIR and GC-MS analysis confirmed that the isolates rapidly biodegrade crude oil under ecological and economic conditions.


Assuntos
Lignina , Petróleo , Lignina/metabolismo , Lacase/genética , Lacase/metabolismo , Peroxidases/metabolismo , Fungos/metabolismo , Petróleo/metabolismo , Biodegradação Ambiental
3.
Environ Sci Pollut Res Int ; 30(13): 38394-38408, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36580257

RESUMO

Pesticides already were detected in the oceans, and their fates require evaluation in these environmental conditions. Therefore, marine-derived fungi were assessed for Esfenvalerate biodegradation, approaching the effects of seawater and use of commercial emulsifiable formulation. Residual pesticide and four metabolites were quantified. Furthermore, kinetics were determined for the three tested strains (Microsphaeropsis sp. CBMAI 1675, Acremonium sp. CBMAI 1676, and Westerdykella sp. CBMAI 1679). These facultative marine fungi biodegraded up to 87 ± 2% of 100 mg L-1 Esfenvalerate in liquid media. However, Esfenvalerate biodegradation was faster in low salinity conditions than in artificial seawater. Moreover, rates of consumption were higher for Esfenvalerate in the pure form than for the commercial emulsifiable formulation. These results suggest that half-life of Esfenvalerate formulated with inert ingredients in seawater can have a double prolongation effect that can contribute to health and environmental issues.


Assuntos
Praguicidas , Piretrinas , Piretrinas/metabolismo , Fungos/metabolismo , Praguicidas/metabolismo , Água do Mar/microbiologia , Biodegradação Ambiental
4.
Mar Environ Res ; 153: 104816, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31679790

RESUMO

The estimation of oil spill effects on marine ecosystems is limited to the extent of our knowledge on the autochthonous biota. Fungi are involved in key ecological marine processes, representing a major component of post-spill communities. However, information on their functional capacities remains lacking. Herein we analyzed cultivable fungi from sediments in two oil-drilling regions of the Gulf of Mexico for their ability to tolerate and use hexadecane and 1-hexadecene as the sole carbon sources; and to evaluate gene expression profiles of key hydrocarbonoclastic taxa during utilization of these hydrocarbons. The isolated fungi showed differential sensitivity patterns towards the tested hydrocarbons under three different concentrations. Remarkably, six OTUs (Aureobasidium sp., Penicillium brevicompactum, Penicillium sp., Phialocephala sp., Cladosporium sp. 1 and 2) metabolized the tested alkane and alkene as the sole carbon sources, confirming that deep-sea fungal taxa are valuable genetic resources with potential use in bioremediation. RNA-seq results revealed distinctive gene expression profiles in the hydrocarbonoclastic fungus Penicillium sp. when using hexadecane and 1-hexadecene as the sole carbon sources, with up-regulation of genes involved in transmembrane transport, metabolism of six-carbons carbohydrates, and nitric oxide pathways.

5.
Nat Prod Res ; 32(11): 1361-1364, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28669240

RESUMO

Due to the increasing emergence of resistance of bacterial pathogens to current antibiotics, we have examined the marine fungi present in sea sediments obtained 200 m offshore to discover new antibacterial compounds active against multidrug-resistant bacteria. One strain, identified as Emericellopsis minima, was isolated from sediments of Talcahuano Bay (Chile). From the liquid culture of E. minima, we isolated Emerimicin IV, a unique fungal peptaibol that exhibited antibacterial activity. The structure of this compound was assigned by interpretation of 1H NMR and HR-LCMS data. Emerimicin IV showed bacteriostatic activity against clinical isolates of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis with MIC values ranging between 100 and 12.5 µg/mL.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Peptaibols/química , Peptaibols/farmacologia , Antibacterianos/química , Ascomicetos/química , Baías , Chile , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Humanos , Espectroscopia de Ressonância Magnética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Vancomicina/farmacologia
6.
AMB Express ; 7(1): 222, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29264716

RESUMO

Laccases are multicopper oxidases that are able to catalyze reactions involving a range of substrates, including phenols and amines, and this ability is related to the existence of different laccases. Basidiomycetes usually have more than one gene for laccase, but until now, this feature has not been demonstrated in a marine-derived fungus. Peniophora sp. CBMAI 1063 is a basidiomycete fungus isolated from a marine sponge that exhibits the ability to secrete significant amounts of laccase in saline conditions. In the present study, we identified laccase sequences from the transcriptome of Peniophora sp. CBMAI 1063 and used them to perform different molecular in silico analyses. The results revealed the presence of at least eight putative genes, which may encode ten different laccases with peptide lengths ranging from 482 to 588 aa and molecular weights ranging from 53.5 to 64.4 kDa. These laccases seem to perform extracellular activities, with the exception of one that may represent an intracellular laccase. The 10 predicted laccases expressed by Peniophora sp. CBMAI 1063 in laccase-induced media showed different patterns of N-glycosylation and isoelectric points and are divided into two classes based on the residue associated with the regulation of the redox potential of the enzyme. None of the predicted laccases showed more than 61% similarity to other fungal laccases. Based on the differences among the laccases expressed by Peniophora sp. CBMAI 1063, this marine-derived basidiomycete represents a valuable resource with strong potential for biotechnological exploitation.

7.
Nat Prod Res ; 31(22): 2599-2603, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28135874

RESUMO

A fungal strain of Aspergillus niger was recovered from sediments collected in the Northeast coast of Brazil (Pecém's offshore port terminal). Cultivation in different growth media yielded a new ester furan derivative, 1, along with malformin A1, malformin C, cyclo (trans-4-hydroxy-L-Pro-L-Leu), cyclo (trans-4-hydroxy-L-Pro-L-Phe), cyclo (L-Pro-L-Leu), cyclo (L-Pro-L-Phe), pseurotin D, pseurotin A, chlovalicin, cyclo (L-Pro-L-Tyr) and cyclo (L-Pro-L-Val). Compound 1 was cytotoxic against HCT-116 cell line, showing IC50 = 2.9 µg/mL (CI 95% from 1.8 to 4.7 µg/mL).


Assuntos
Antineoplásicos/farmacologia , Aspergillus niger/química , Antineoplásicos/química , Brasil , Cicloexanonas/isolamento & purificação , Cicloexanonas/farmacologia , Dipeptídeos/isolamento & purificação , Dipeptídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Compostos de Epóxi/isolamento & purificação , Compostos de Epóxi/farmacologia , Furanos/química , Sedimentos Geológicos/microbiologia , Células HCT116 , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Pirrolidinonas/isolamento & purificação , Pirrolidinonas/farmacologia
8.
Adv Food Nutr Res ; 78: 153-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27452170

RESUMO

In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds.


Assuntos
Organismos Aquáticos/enzimologia , Biotecnologia/métodos , Animais , Organismos Aquáticos/microbiologia , Bactérias/enzimologia , Biodegradação Ambiental , Biotransformação , Brasil , Cianobactérias , Fungos/enzimologia , Phaeophyceae , Poríferos/enzimologia , Rodófitas
9.
AMB Express ; 6(1): 25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27009074

RESUMO

Marine-derived fungi have been reported as relevant producers of enzymes, which can have different properties in comparison with their terrestrial counterparts. The aim of the present study was to select from a collection of 493 marine-derived fungi the best producer of xylanase in order to evaluate the enzymatic production under different conditions. A total of 112 isolates produced xylanase in solid medium containing xylan as the carbon source, with 31 of them able to produce at least 10 U/mL of the enzyme. The best production (49.41 U/mL) was achieved by the strain LAMAI 31, identified as Aspergillus cf. tubingensis. After confirming the lack of pathogenicity (absence of ochratoxin A and fumonisin B2 production) this fungus was submitted to the experimental design in order to evaluate the effect of different variables on the enzymatic production, with the aim of optimizing culture conditions. Three experimental designs (two Plackett-Burman and one factorial fractional) were applied. The best condition for the enzymatic production was defined, resulting in an increase of 12.7 times in comparison with the initial production during the screening experiments. In the validation assay, the peak of xylanase production (561.59 U/mL) was obtained after 96 h of incubation, being the best specific activity achieved after 72 h of incubation. Xylanase from A. cf. tubingensis LAMAI 31 had optimum pH and temperature at 5.0 and 55 °C, respectively, and was shown to be stable at a range of 40-50 °C, and in pH from 3.6 to 7.0. Results from the present work indicate that A. cf. tubingensis LAMAI 31 can be considered as a new genetic resource for xylanase production.

10.
Environ Sci Pollut Res Int ; 23(9): 8659-68, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26797957

RESUMO

In the present study, the biotechnological potential of the marine-derived fungus Peniophora sp. CBMAI 1063 was investigated in relation to Reactive Black 5 (RB5) dye decolorization and degradation using an integrated statistical design composed of Plackett-Burman design (P&B), central composite design (CCD), and response surface methodology (RSM). RB5 dye was effectively decolorized (94 %) in saline conditions, without any detection of mutagenic compounds, and simultaneously, 57 % of total organic carbon (TOC) was removed in 7 days. The activity of lignin peroxidase (LiP) was not detected during the process. The gene expression of laccase (Lac) and manganese peroxidase (MnP) enzymes produced during the process was evaluated, and results from this experiment coupled with LC-MS analyses revealed that in the early stage of dye decolorization, a higher MnP gene expression and significant enzymatic activity was detected in Peniophora sp. CBMAI 1063 with the formation of p-Base and TAHNDS compounds. This paper reports innovative data related to the textile dye decolorization by the marine-derived basidiomycete Peniophora sp. CBMAI 1063, showing the metabolites formed and enzymatic action throughout the process in saline condition. The strategy used showed to be an efficient statistical approach that provides an attractive solution for the screening and simultaneous optimization of the degradation process.


Assuntos
Basidiomycota/fisiologia , Corantes/metabolismo , Têxteis , Poluentes Químicos da Água/metabolismo , Basidiomycota/metabolismo , Biodegradação Ambiental , Lacase/genética , Lacase/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA