Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38780791

RESUMO

PURPOSE: We aim to compare interfragmentary compression with the position osteosynthesis in the fixation of different femoral neck fractures (FN) in synthetic bones subjected to vertical load. METHODS: Forty-two synthetic femurs were subjected to neck fractures and separated into 3 groups according to the Pauwels classification: Pauwels I had 6 units (PI); Pauwels II, 24 units, with and without comminution (PII); and Pauwels III, 12 units, with and without comminution (PIII). After, they were fixed with 2 different ways: three 7, 0 mm cannulated lag screws (CSs) versus three 6, 5 mm solid fully threaded screws (SSs). Screws positioning was oriented by the Pauwels classification: inverted triangle or crossed screws. All specimens were submitted to vertical loading until failure. RESULTS: The average force was 79.4 ± 22.6 Kgf. The greatest one was recorded in model 1 (135.6 Kgf), and the lowest in model 41 (39.6 Kgf). CSs and SSs had similar resistance until failure (p = 0.2). PI showed heightened resistance and PIII showed a worse response (p < 0,01). CSs had better performance in PIII (p = 0.048). Comminution and screws orientation caused no difference on peak force (p = 0.918 and p = 0.340, respectively). CONCLUSIONS: In synthetic bones, the resistance of a femoral neck fracture osteosynthesis using a 7, 0 mm cannulated lag screw or 6, 5 mm solid fully threaded screw are similar. There was no loss of efficiency with comminution in the femoral neck. Osteosynthesis resistance decreased with the verticalization of the fracture line and, in the more vertical ones, interfragmentary compression with CSs was more resistant than positional osteosynthesis with SSs.

2.
Data Brief ; 53: 110218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425877

RESUMO

Concrete is a prominent construction material globally, owing to its reputed attributes such as robustness, endurance, optimal functionality, and adaptability. Formulating concrete mixtures poses a formidable challenge, mainly when introducing novel materials and additives and evaluating diverse design resistances. Recent methodologies for projecting concrete performance in fundamental aspects, including compressive strength, flexural strength, tensile strength, and durability (encompassing homogeneity, porosity, and internal structure), exist. However, actual approaches need more diversity in the materials and properties considered in their analyses. This dataset outlines the outcomes of an extensive 10-year laboratory investigation into concrete materials involving mechanical tests and non-destructive assessments within a comprehensive dataset denoted as ConcreteXAI. This dataset encompasses evaluations of mechanical performances and non-destructive tests. ConcreteXAI integrates a spectrum of analyzed mixtures comprising twelve distinct concrete formulations incorporating diverse additives and aggregate types. The dataset encompasses 18,480 data points, establishing itself as a cutting-edge resource for concrete analysis. ConcreteXAI acknowledges the influence of artificial intelligence techniques in various science fields. Emphatically, deep learning emerges as a precise methodology for analyzing and constructing predictive models. ConcreteXAI is designed to seamlessly integrate with deep learning models, enabling direct application of these models to predict or estimate desired attributes. Consequently, this dataset offers a resourceful avenue for researchers to develop high-quality prediction models for both mechanical and non-destructive tests on concrete elements, employing advanced deep learning techniques.

3.
Int Endod J ; 57(5): 601-616, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38376108

RESUMO

AIM: To compare eight large- and low-tapered heat-treated reciprocating instruments regarding their design, metallurgy, mechanical properties, and irrigation flow through an in silico model. METHODOLOGY: A total of 472 new 25-mm E-Flex Rex (25/.04 and 25/.06), Excalibur (25/.05), Procodile (25/.06), Reciproc Blue R25 (25/.08v), WaveOne Gold Primary (25/.07v), and Univy Sense (25/.04 and 25/.06) instruments were evaluated regarding their design (stereomicroscopy, scanning electron microscopy, and 3D surface scanning), metallurgy (energy-dispersive X-ray spectroscopy and differential scanning calorimetry), and mechanical performance (cyclic fatigue, torsional resistance, cutting ability, bending and buckling resistance). Computational fluid dynamics assessment was also conducted to determine the irrigation flow pattern, apical pressure, and wall shear stress in simulated canal preparations. Kruskal-Wallis and one-way anova post hoc Tukey tests were used for statistical comparisons (α = 5%). RESULTS: Instruments presented variations in blade numbers, helical angles, and tip designs, with all featuring non-active tips, symmetrical blades, and equiatomic nickel-titanium ratios. Cross-sectional designs exhibited an S-shaped geometry, except for WaveOne Gold. Univy 25/.04 and Reciproc Blue displayed the smallest and largest core diameters at D3. Univy 25/.04 and E-Flex Rec 25/.04 demonstrated the longest time to fracture (p < .05). Reciproc Blue and Univy 25/.04 exhibited the highest and lowest torque to fracture, respectively (p < .05). Univy 25/.04 and Reciproc Blue had the highest rotation angles, whilst E-Flex Rec 25/.06 showed the lowest angle (p < .05). The better cutting ability was observed with E-Flex Rec 25/.06, Procodile, Excalibur, and Reciproc Blue (p > .05). Reciproc R25 and E-Flex Rec showed the highest buckling resistance values (p < .05), with WaveOne Gold being the least flexible instrument. The impact of instruments' size and taper on wall shear stress and apical pressure did not follow a distinct pattern, although Univy 25/.04 and E-Flex Rec 25/.06 yielded the highest and lowest values for both parameters, respectively. CONCLUSIONS: Low-tapered reciprocating instruments exhibit increased flexibility, higher time to fracture, and greater angles of rotation, coupled with reduced maximum bending loads and buckling strength compared to large-tapered instruments. Nevertheless, low-tapered systems also exhibit lower maximum torque to fracture and inferior cutting ability, contributing to a narrower apical canal enlargement that may compromise the penetration of irrigants in that region.


Assuntos
Instrumentos Odontológicos , Titânio , Estudos Transversais , Desenho de Equipamento , Teste de Materiais , Estresse Mecânico , Titânio/química , Preparo de Canal Radicular , Metalurgia
5.
Biomedicines ; 11(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137506

RESUMO

We evaluated and compared the biomechanical properties of Leukocyte-and Platelet Rich Fibrin L-PRF clots and membranes derived from smoker and nonsmoker donors. Twenty venous-blood donors (aged 18 to 50 years) were included after signing informed consent forms. L-PRF clots were analyzed and then compressed to obtain L-PRF membranes. L-PRF clot and membrane samples were tested in quasi-static uniaxial tension and the stress-stretch response was registered and characterized. Furthermore, scanning electron microscope representative images were taken to see the fibrin structure from both groups. The analysis of stress-stretch curves allowed us to evaluate the statistical significance in differences between smoker and nonsmoker groups. L-PRF membranes showed a stiffer response and higher tensile strength when compared to L-PRF clots. However, no statistically significant differences were found between samples from smokers and nonsmokers. With the limitations of our in vitro study, we can suggest that the tensile properties of L-PRF clots and membranes from the blood of smokers and nonsmokers are similar. More studies are necessary to fully characterize the effect of smoking on the biomechanical behavior of this platelet concentrate, to further encourage its use as an alternative to promote wound healing in smokers.

6.
Restor Dent Endod ; 48(1): e4, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36875808

RESUMO

Objectives: This study aimed to compare the torsional and cyclic fatigue resistance of ProGlider (PG), WaveOne Gold Glider (WGG), and TruNatomy Glider (TNG). Materials and Methods: A total of 15 instruments of each glide path system (n = 15) were used for each test. A custom-made device simulating an angle of 90° and a radius of 5 millimeters was used to assess cyclic fatigue resistance, with calculation of number of cycles to failure. Torsional fatigue resistance was assessed by maximum torque and angle of rotation. Fractured instruments were examined by scanning electron microscopy (SEM). Data were analyzed with Shapiro-Wilk and Kruskal-Wallis tests, and the significance level was set at 5%. Results: The WGG group showed greater cyclic fatigue resistance than the PG and TNG groups (p < 0.05). In the torsional fatigue test, the TNG group showed a higher angle of rotation, followed by the PG and WGG groups (p < 0.05). The TNG group was superior to the PG group in torsional resistance (p < 0.05). SEM analysis revealed ductile morphology, typical of the 2 fracture modes: cyclic fatigue and torsional fatigue. Conclusions: Reciprocating WGG instruments showed greater cyclic fatigue resistance, while TNG instruments were better in torsional fatigue resistance. The significance of these findings lies in the identification of the instruments' clinical applicability to guide the choice of the most appropriate instrument and enable the clinician to provide a more predictable glide path preparation.

7.
Belo Horizonte; s.n; 2023. 64 p. ilus, graf, tab.
Tese em Português | LILACS, BBO - Odontologia | ID: biblio-1509346

RESUMO

A introdução da liga NiTi na endodontia proporcionou a fabricação de instrumentos com excelentes propriedades mecânicas, e uma das principais características é a possibilidade de alteração das temperaturas de transformação da liga, o qual pode possibilitar a presença de martensita em temperatura ambiente e consequentemente um efeito memória de forma. Entretanto, alguns dos sistemas comercializados atualmente possuem pouca ou nenhuma informação científica relatando suas propriedades mecânicas, características de design e métodos de fabricação. O objetivo deste trabalho foi comparar características geométricas, metalúrgicas e propriedades mecânicas (resistência à torção e flexão) de instrumentos Reciproc Blue (VDW, Munique, Alemanha), e quatro sistemas reciprocantes réplicas. Um total de 39 instrumentos de cada um dos sistemas reciprocantes, Reciproc Blue (RB), Prodesign R (PDR), V File (VF), V+ File (V+) e Univy One (UO) foram utilizados na pesquisa. O programa de Image J foi utilizado para mensuração dos diâmetros a cada milímetro da parte ativa e da área da seção transversal a 3 mm da ponta dos instrumentos. Imagens de MEV da parte ativa foram realizados para avaliar o acabamento superficial dos instrumentos. A composição atômica, fases presentes e temperaturas de transformação foram verificadas através de EDS, DRX e DSC, respectivamente. A flexibilidade foi aferida através de ensaios de dobramento até 45º conforme a especificação ISO 3630-1, e os ensaios de resistência à torção foram realizados de acordo com a especificação Nº28 ANSI/ADA. Todos os instrumentos apresentaram uma quantidade aproximadamente equiatômica de níquel e titânio. A análise qualitativa das fases cristalinas realizada através de ensaios de DRX, demonstrou a predominância de Fase R em todos os grupos, com exceção do grupo UO que apresenta uma mistura de fase R e martensita B19'. Na avaliação da área da seção, o instrumento RB obteve valores intermediários, os instrumentos PDR e V+ possuem menores valores e os instrumentos VF e UO possuem maiores valores. Observou-se grande impacto da geometria sobre as propriedades mecânicas, sendo que aqueles sistemas que apresentavam menor área que RB (PDR, V+) mostraram-se mais flexíveis e menos resistentes à torção (p<0.05), e o instrumento VF que teve maior área apresentou, como esperado, menos flexibilidade (p<0.05) e resistência torcional semelhante (p>0.05). A única exceção se deu com o sistema UO, que embora apresentasse uma maior área de seção, mostrou-se mais flexível e menos resistente à torção, provavelmente por influência da maior quantidade de martensita presente à temperatura ambiente. Nenhum dos instrumentos réplicas avaliados apresentaram características e comportamento mecânico iguais ao sistema padrão RB. Sugere-se que mais estudos devem ser realizados para a comparação do comportamento clínico destes instrumentos.


The introduction of NiTi alloy in endodontics has allowed the manufacturing of instruments with excellent mechanical properties, and one of the main characteristics is the ability to change alloy's transformation temperature, which can enable the presence of martensite at room temperature and consequently favor a shape memory effect. However, some of the currently marketed systems have limited or no scientific information regarding their mechanical properties, design characteristics, and manufacturing methods. The aim of this study was to compare the geometric characteristics, metallurgical aspects, and mechanical properties (torsional and flexural strength) of Reciproc Blue instruments (VDW, Munich, Germany) with four replica-like reciprocating systems. A total amount of 39 instruments from each reciprocating system, namely Reciproc Blue (RB), Prodesign R (PDR), V File (VF), V+ File (V+), and Univy One (UO), were used in the study. The Image J program was used to measure the diameters at every millimeter along the instruments active portion and the cross-sectional area at 3 mm from the instrument tip. SEM images of the active portion were obtained to evaluate the surface finishing of the instruments. Atomic composition, phases present, and transformation temperatures were determined through EDS, XRD, and DSC analyses, respectively. Flexibility was assessed by bending tests up to 45° according to ISO 3630-1 specifications, and torsional strength tests were performed according with ANSI/ADA Specification No. 28. All instruments exhibited an approximately equiatomic composition of nickel and titanium. Qualitative analysis of the crystalline phases using XRD tests demonstrated the predominance of the R-phase in all groups, except for the UO group, which exhibited a mixture of Rphase and B19' martensite. In terms of diameter and cross-sectional area evaluation, the RB instrument obtained intermediate values, while the PDR and V+ instruments had smaller values, and the VF and UO instruments had larger values. A significant impact of geometry on mechanical properties was observed, with systems exhibiting a smaller area than RB (PDR, V+) being more flexible and less torsion-resistant (p<0.05), and the VF instrument with a larger area showed, as expected, less flexibility (p<0.05) and similar torsional resistance (p>0.05). The only exception was the UO system, which, despite having a larger geometric configuration, exhibited greater flexibility and less torsional resistance, likely due to the higher amount of martensite present at room temperature. None of the replica-like instruments evaluated showed identical characteristics and mechanical behavior to the standard RB system. Further studies are suggested to compare the clinical performance of these instruments.


Assuntos
Varredura Diferencial de Calorimetria , Endodontia , Torção Mecânica , Ligas de Memória da Forma , Testes Mecânicos
8.
Braz. oral res. (Online) ; 37: e034, 2023. tab
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1430028

RESUMO

Abstract This study aimed to compare the mechanical properties of various occlusal plate materials by analyzing surface roughness, Knoop microhardness, flexural strength, and modulus of elasticity. Fifty samples were prepared and classified as SC (self-curing acrylic resin), WB (heat-cured acrylic resin), ME (acrylic resin polymerized by microwave energy), P (resin print), and M (polymethylmethacrylate polymer block for computer-aided design/computer-aided manufacturing). The data were analyzed using a one-way analysis of variance and Tukey's honestly significant difference test. Surface roughness was the same in all groups. The surface hardness of group M was statistically superior. The samples from groups P and M had higher flexural strength than other samples. The modulus of elasticity of group SC was statistically lower than that of other groups. The mechanical properties of the materials used to make the occlusal plates differed, and group M achieved the best results in all analyses. Therefore, clinicians must consider the material used to manufacture long-lasting and efficient occlusal splints.

9.
Braz. oral res. (Online) ; 37: e43, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1430043

RESUMO

Abstract The present study evaluated the effect of the taper angle of different internal conical connection implants and cyclic loading on the implant-abutment bacterial seal. A total of 96 implant-abutment sets were divided into eight groups. Four groups of different taper degrees with cyclic mechanical loading of 500,000 cycles per sample, with a 120-N load at 2 Hz before analysis [16DC (16-degree, cycled), 11.5DC (11.5-degree, cycled), 3DC (3- degree, cycled) and 4DC (4- degree, cycled)] were compared to four control groups without cyclic loading [16D (16-degree), 11.5D (11.5-degree), 3D (3-degree), and 4D (4-degree)]. Microbiological analysis was performed by immersing all samples in a suspension containing Escherichia coli and incubating them at 37°C. After 14 days, the presence of bacterial seals was evaluated. Fisher-Freeman-Halton exact tests and binomial tests were performed (5% significance level). The groups showed significant differences in bacterial seal, and mechanical load cycling improved the bacterial seal in the 3DC group. In all other groups, no significant differences in bacterial seal were found between cycled and uncycled samples. To conclude, the internal conical connection with a 3-degree taper angle showed better results than the other connection with different angles when subjected to load cycling. However, none of the angles tested were fully effective in sealing the implant-abutment interface.

10.
Rev Bras Ortop (Sao Paulo) ; 57(6): 1051-1059, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540739

RESUMO

Objective This study aimed to evaluate the influence of sterilization on the compressive and flexural mechanical strength of hydroxyapatite-based biocomponents obtained through freeze-dried bovine bone, and its association with chitosan. Methods Freeze-dried bovine bone was processed into 100 µm particles and mixed with 50% of its weight in chitosan. The mixture was packed in metallic molds for preparing the specimens, and sterilized at 127°C using an autoclave for subsequent experimentation. The specimens were subjected to compression and flexion tests following norm 5833 of the International Organization for Standardization (ISO), with 6 × 12 mm cylindrical blocks (for compression tests) and 75 × 10 × 3.3 mm plates (for flexion tests) as samples. The samples were divided into four groups of 20 specimens each, with 10 for compression and 10 for flexion tests. Three groups were sterilized (autoclave, gamma rays, and ethylene oxide), whereas the fourth group (control) was not. The mechanical tests obtained from the different sterilization processes were compared using analysis of variance (ANOVA, p < 0.05), followed by the Tukey multiple comparison test of means, with a 95% confidence interval. Results The specimens presented mean compressive strengths of 10.25 MPa for the control group and 3.67 MPa, 9.65 MPa, and 9.16 MPa after ethylene oxide, gamma ray, and autoclave sterilization, respectively. Flexion test results showed an average resistance of 0.40 MPa in the control group, and 0.15 MPa, 0.17 MPa, and 0.30 MPa after ethylene oxide, gamma ray, and autoclave sterilization, respectively. There were statistically significant differences observed in the maximum compression of the ethylene oxide-sterilized group compared with that of the control group ( p = 0 . 0002), gamma ray-sterilized ( p = 0.0003), and the autoclaved ( p = 0.0006) groups. There was a statistically significant difference in maximum flexion of the specimens sterilized by gamma rays when compared with the control group ( p = 0.0245). However, low flexural strengths were observed in all specimens. Conclusion The autoclave sterilization group did not result in statistically significant differences in either compression or flexion strength tests. Thus, the autoclave proved to be the best sterilization option for the hydroxyapatite-based biocomponents in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA