Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Res ; 247: 118220, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242422

RESUMO

The work investigates the potential of peanut shells, an abundant agro-industrial waste, to serve as an adsorbent precursor for the effective and simple treatment of effluents loaded with cadmium and nickel ions. Among the adsorbents prepared, carbonized peanut shell (CCarb), due to its higher adsorption capacity, proved to be the most effective compared to carbonized and activated peanut shell (CATQ). The carbonization process led to structural changes, which resulted in an increase in surface area (around 6 times more in CATQ) and pore volume (around 3 times more in CATQ). Even so, the amount of H+ acid sites due to acid activation produced unfavorable effects for adsorption. Hydroxyl, carboxyl and carbonyl groups were identified on the adsorbent surface which presented favorable charges for metal adsorption. This improvement propels the carbonized variant to the forefront, demonstrating the highest adsorption capacity and reaching equilibrium in less than 90 and 60 min for cadmium and nickel ions, respectively. In both monocomponent and bicomponent systems concentrations greater than 40 ppm signify an increase in adsorption capacity for Ni2+. The experimental data best fit the Freundlich model, showing maximum adsorption capacities of 17.04 mg g-1 for cadmium and 31.28 mg g-1 for nickel. Despite the antagonistic effect observed in the bicomponent system, this study concludes by underlining the promise of activated carbon from peanut shells to harmonize technical and environmental concerns.


Assuntos
Níquel , Poluentes Químicos da Água , Cádmio , Arachis , Adsorção , Bismuto , Íons , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
2.
Materials (Basel) ; 16(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37445198

RESUMO

In this study, inert dry bioadsorbents prepared from corn cob residues (CCR), cocoa husk (CH), plantain peels (PP), and cassava peels (CP) were used as adsorbents of heavy metal ions (Pb2+ and Ni2+) in single-batch adsorption experiments from synthetic aqueous solutions. The physicochemical properties of the bioadsorbents and the adsorption mechanisms were evaluated using different experimental techniques. The results showed that electrostatic attraction, cation exchange, and surface complexation were the main mechanisms involved in the adsorption of metals onto the evaluated bioadsorbents. The percentage removal of Pb2+ and Ni2+ increased with higher adsorbent dosage, with Pb2+ exhibiting greater biosorption capacity than Ni2+. The bioadsorbents showed promising potential for adsorbing Pb2+ with monolayer adsorption capacities of 699.267, 568.794, 101.535, and 116.820 mg/g when using PP, CCR, CH, and CP, respectively. For Ni2+, Langmuir's parameter had values of 10.402, 26.984, 18.883, and 21.615, respectively, for PP, CCR, CH, and CP. Kinetics data fitted by the pseudo-second-order model revealed that the adsorption rate follows this order: CH > CP > CCR > PP for Pb2+, and CH > CCR > PP > CP for Ni2+. The adsorption mechanism was found to be controlled by ion exchange and precipitation. These findings suggest that the dry raw biomasses of corn cob residues, cocoa husk, cassava, and plantain peels can effectively remove lead and nickel, but further research is needed to explore their application in industrial-scale and continuous systems.

3.
Braz J Microbiol ; 54(2): 739-752, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37157054

RESUMO

Bacterial proteases have extensive applications in various fields of industrial microbiology. In this study, protease-producing organisms were screened on skimmed milk agar media using serial dilution. Through microbial biomass production, biochemical tests, protease-specific activity, and 16 s RNA gene sequencing, the isolates were identified as Bacillus subtilis and submitted to NCBI. The strain accession numbers were designated as A1 (MT903972), A2 (MT903996), A4 (MT904091), and A5 (MT904796). The strain A4 Bacillus subtilis showed highest protease-specific activity as 76,153.84 U/mg. A4 Bacillus subtilis was unaffected by Ca2+, Cu2+, Fe2+, Hg2+, Mg2+, Na, Fe2+, and Zn2+ but was inhibited by 80% by Mn2+ (5 mM). The protease activity was inhibited by up to 30% by iodoacetamide (5 mM). These findings confirm the enzyme to be a cysteine protease which was further confirmed by MALDI-TOF. The identified protease showed 71% sequence similarity with Bacillus subtilis cysteine protease. The crude cysteine protease significantly aided in fabric stain removal when added to a generic detergent. It also aided in the recovery of silver from used X-ray films and de-hairing of goat skin hides and showed decent application in meat tenderization. Thus, the isolated cysteine protease has high potential for industrial applications.


Assuntos
Bacillus subtilis , Cisteína Proteases , Peptídeo Hidrolases/metabolismo , Proteólise , Microbiologia Industrial , Proteínas de Bactérias/metabolismo
4.
Neurotoxicology ; 95: 181-192, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36775208

RESUMO

The environment, containing pollutants, toxins, and transition metals (copper, iron, manganese, and zinc), plays a critical role in neurodegenerative disease development. Copper occupational exposure increases Parkinson's disease (PD) risk. Previously, we determined the mechanisms by which copper induces dopaminergic cell death in vitro. The copper transporter protein 1 (Ctr1) overexpression led to intracellular glutathione depletion potentiating caspase-3 mediated cell death; oxidative stress was primarily cytosolic, and Nrf2 was upregulated mediating an antioxidant response; and protein ubiquitination, AMPK-Ulk1 signaling, p62, and Atg5-dependent autophagy were increased as a protective mechanism. However, the effect of chronic copper exposure on the neurodegenerative process has not been explored in vivo. We aimed to elucidate whether prolonged copper treatment reproduces PD features and mechanisms during aging. Throughout 40 weeks, C57BL/6J male mice were treated with copper at 0, 100, 250, and 500 ppm in the drinking water. Chronic copper exposure altered motor function and induced dopaminergic neuronal loss, astrocytosis, and microgliosis in a dose-dependent manner. α-Synuclein accumulation and aggregation were increased in response to copper, and the proteasome and autophagy alterations, previously observed in vitro, were confirmed in vivo, where protein ubiquitination, AMPK phosphorylation, and the autophagy marker LC3-II were also increased by copper exposure. Finally, nitrosative stress was induced by copper in a concentration-dependent fashion, as evidenced by increased protein nitration. To our knowledge, this is the first study combining chronic copper exposure and aging, which may represent an in vivo model of non-genetic PD and help to assess potential prophylactic and therapeutic approaches. DATA AVAILABILITY: The data underlying this article are available in the article.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Masculino , Cobre/toxicidade , Cobre/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos , Envelhecimento
5.
Pathogens ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36678418

RESUMO

Leishmaniasis is a neglected disease caused by protozoa belonging to the Leishmania genus. Notably, the search for new, promising and potent anti-Leishmania compounds remains a major goal due to the inefficacy of the available drugs used nowadays. In the present work, we evaluated the effects of 1,10-phenanthroline-5,6-dione (phendione) coordinated to silver(I), [Ag(phendione)2]ClO4 (Ag-phendione), and copper(II), [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione), as potential drugs to be used in the chemotherapy against Leishmania amazonensis and Leishmania chagasi. The results showed that promastigotes treated with Ag-phendione and Cu-phendione presented a significant reduction in the proliferation rate. The IC50 values calculated to Ag-phendione and Cu-phendione, respectively, were 7.8 nM and 7.5 nM for L. amazonensis and 24.5 nM and 20.0 nM for L. chagasi. Microscopical analyses revealed several relevant morphological changes in promastigotes, such as a rounding of the cell body and a shortening/loss of the single flagellum. Moreover, the treatment promoted alterations in the unique mitochondrion of these parasites, inducing significant reductions on both metabolic activity and membrane potential parameters. All these cellular perturbations induced the triggering of apoptosis-like death in these parasites, as judged by the (i) increased percentage of annexin-positive/propidium iodide negative cells, (ii) augmentation in the proportion of parasites in the sub-G0/G1 phase and (iii) DNA fragmentation. Finally, the test compounds showed potent effects against intracellular amastigotes; contrarily, these molecules were well tolerated by THP-1 macrophages, which resulted in excellent selective index values. Overall, the results highlight new selective and effective drugs against Leishmania species, which are important etiological agents of both cutaneous (L. amazonensis) and visceral (L. chagasi) leishmaniasis in a global perspective.

6.
Environ Sci Pollut Res Int ; 30(7): 17899-17914, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205869

RESUMO

This work describes characterization and leaching studies of pre-salt drill cuttings from offshore oil and gas exploration in ultradeep waters. The metals Fe, Al, and Ba were present in the highest concentrations in drill cuttings (30000 mg kg-1, 32600 mg kg-1, and 33000 mg kg-1 respectively). The most significant contents of Ba, Al, Fe, Cu, Pb, Mn, Si, and Zn were found in cuttings containing non-aqueous fluids (NADF), but the highest concentrations of Ni and Cr were found in samples containing aqueous fluids (WBDF). The content of total petroleum hydrocarbons (TPHs) in the samples with WBDF fluids ranged from < 5.58 to 15.76 mg Kg-1 while the TPH content of the samples with NADF ranged from 28.46 to 47.16 mg Kg-1. Data on the content of unresolved complex mixtures (UCMs) and sheen tests indicated probable contamination of some cutting samples with oil. Most samples showed some degree of contamination by polycyclic aromatic hydrocarbons (PAHs). The metals present in the highest concentrations in saline and aqueous leachates were Si and Ba. The metals Cd, Cu, Ni, and Zn were present in varied concentrations in the saline leachates, and the metals Si, Ba, Cu, and Zn were found in the aqueous leachates.


Assuntos
Metais Pesados , Petróleo , Metais/análise , Hidrocarbonetos/análise , Cloreto de Sódio , Cloreto de Sódio na Dieta , Metais Pesados/análise , Monitoramento Ambiental
7.
Microorganisms ; 10(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296278

RESUMO

Mine tailings are produced by mining activities and contain diverse heavy metal ions, which cause environmental problems and have negative impacts on ecosystems. Different microorganisms, including yeasts, play important roles in the absorption and/or adsorption of these heavy metal ions. This work aimed to analyze proteins synthesized by the yeast Yarrowia lipolytica AMJ6 (Yl-AMJ6), isolated from Andean mine tailings in Peru and subjected to stress conditions with common heavy metal ions. Yeast strains were isolated from high Andean water samples impacted by mine tailings from Yanamate (Pasco, Peru). Among all the isolated yeasts, the Yl-AMJ6 strain presented LC50 values of 1.06 mM, 1.42 mM, and 0.49 mM for the Cr+6, Cu+2, and Cd+2 ions, respectively. Proteomic analysis of theYl-AMJ6 strain under heavy metal stress showed that several proteins were up- or downregulated. Biological and functional analysis of these proteins showed that they were involved in the metabolism of proteins, nucleic acids, and carbohydrates; response to oxidative stress and protein folding; ATP synthesis and ion transport; membrane and cell wall; and cell division. The most prominent proteins that presented the greatest changes were related to the oxidative stress response and carbohydrate metabolism, suggesting the existence of a defense mechanism in these yeasts to resist the impact of environmental contamination by heavy metal ions.

8.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136547

RESUMO

Lecithin-dependent thermolabile hemolysin (LDH) is a virulence factor excreted by Vibrio parahaemolyticus, a marine bacterium that causes important losses in shrimp farming. In this study, the function of LDH was investigated through its inhibition by metal ions (Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Cu2+) and chemical modification reagents: ß-mercaptoethanol (ßME), phenylmethylsulfonyl fluoride (PMSF) and diethyl pyrocarbonate (DEPC). LDH was expressed in the Escherichia coli strain BL-21, purified under denaturing conditions, and the enzymatic activity was evaluated. Cu2+, Ni2+, Co2+ and Ca2+ at 1 mmol/L inhibited the LDH esterase activity by 20−95%, while Mg2+ and Mn2+ slightly increased its activity. Additionally, PMSF and DEPC at 1 mmol/L inhibited the enzymatic activity by 40% and 80%, respectively. Dose-response analysis showed that DEPC was the best-evaluated inhibitor (IC50 = 0.082 mmol/L), followed by Cu2+ > Co2+ > Ni2+ and PMSF (IC50 = 0.146−1.5 mmol/L). Multiple sequence alignment of LDH of V. parahaemolyticus against other Vibrio species showed that LDH has well-conserved GDSL and SGNH motifs, characteristic of the hydrolase/esterase superfamily. Additionally, the homology model showed that the conserved catalytic triad His-Ser-Asp was in the LDH active site. Our results showed that the enzymatic activity of LDH from V. parahaemolyticus was modulated by metal ions and chemical modification, which could be related to the interaction with catalytic amino acid residues such as Ser153 and/or His 393.


Assuntos
Proteínas Hemolisinas , Vibrio parahaemolyticus , Aminoácidos , Dietil Pirocarbonato , Escherichia coli/metabolismo , Esterases , Proteínas Hemolisinas/metabolismo , Hidrolases , Indicadores e Reagentes , Íons , Lecitinas , Mercaptoetanol , Fluoreto de Fenilmetilsulfonil , Vibrio parahaemolyticus/metabolismo , Fatores de Virulência
9.
Sci Total Environ ; 837: 155631, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35508238

RESUMO

Synthetic microdebris (particles of <5 mm) are a worldwide concern because they can affect the community structure of the aquatic ecosystems, organisms, and even food webs. For the biomonitoring of synthetic microdebris (especially microplastics, MPs), mainly benthic invertebrates are used, but crabs have been less studied in the literature. We studied the synthetic microdebris contamination in water, sediments, and three representative intertidal crabs (Neohelice granulata, Cyrtograpsus angulatus and Leptuca uruguayensis) with different lifestyles from the Bahía Blanca estuary, Argentina. The results obtained show the presence of cotton-polyamide (PA), polyethylene (PE), and polyethylene terephthalate (PET) in surface waters. In sediments, we identified cellulose modified (CE), polyester (PES), polyethylene (PE), and alkyd resin, while in crabs, cotton-PA and CE were the predominant ones. The MPs abundance ranged from 8 to 68 items L-1 in surface water, from 971 to 2840 items Kg-1 in sediments, and from 0 to 2.58 items g-1 ww for the three species of crabs. Besides, paint sheets ranged from 0 to 17 in the total samples, with Cr, Mo, Ti, Pb, Cu, Al, S, Ba and Fe on their surface. There were significant differences between the microdebris abundances in the abiotic matrices but not among crabs species. The ecological traits of the different crabs helped to understand the accumulation of synthetic microdebris, an important characteristic when determining the choice of a good biomonitor.


Assuntos
Braquiúros , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental/métodos , Estuários , Sedimentos Geológicos , Plásticos , Polietilenos , Espécies Sentinelas , Água , Poluentes Químicos da Água/análise
10.
Toxics ; 10(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35622617

RESUMO

A copolymer of poly(BuMA-co-EDMA) modified with C-tetra(nonyl)calix[4]resorcinarene was obtained via the impregnation method. The formation of the modified copolymer was confirmed and investigated using various techniques; in this way, the presence of calix[4]resorcinarene was confirmed by FT-IR spectroscopy and by high resolution transmission electron microscopy. The modified copolymer was used for the removal of highly toxic cations (Pb2+, Hg2+, and Cd2+) from aqueous solutions. To perform the removal, we used the batch sorption technique and the effects of time of contact, pH, and volume of sample on the effective sorption were determined. The best results were observed for Pb2+ extraction, which was comparatively more efficient. Adsorption-desorption experiments revealed that the modified copolymer could be used for several cycles without significant loss of adsorption capacity. Finally, the results showed that the modified copolymer application is highly efficient for the removal of lead ions from aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA