Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39064443

RESUMO

Microfluidic separators play a pivotal role in the biomedical and chemical industries by enabling precise fluid manipulations. Traditional fabrication of these devices typically requires costly cleanroom facilities, which limits their broader application. This study introduces a novel microfluidic device that leverages the passive Zweifach-Fung principle to overcome these financial barriers. Through Lagrangian computational simulations, we optimized an eleven-channel Zweifach-Fung configuration that achieved a perfect 100% recall rate for particles following a specified normal distribution. Experimental evaluations determined 2 mL/h as the optimal total flow rate (TFR), under which the device showcased exceptional performance enhancements in precision and recall for micrometer-sized particles, achieving an overall accuracy of 94% ± 3%. Fabricated using a cost-effective, non-cleanroom method, this approach represents a significant shift from conventional practices, dramatically reducing production costs while maintaining high operational efficacy. The cost of each chip is less than USD 0.90 cents and the manufacturing process takes only 15 min. The development of this device not only makes microfluidic technology more accessible but also sets a new standard for future advancements in the field.

2.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675287

RESUMO

DNA data storage based on synthetic oligonucleotides is a major attraction due to the possibility of storage over long periods. Nowadays, the quantity of data generated has been growing exponentially, and the storage capacity needs to keep pace with the growth caused by new technologies and globalization. Since DNA can hold a large amount of information with a high density and remains stable for hundreds of years, this technology offers a solution for current long-term data centers by reducing energy consumption and physical storage space. Currently, research institutes, technology companies, and universities are making significant efforts to meet the growing need for data storage. DNA data storage is a promising field, especially with the advancement of sequencing techniques and equipment, which now make it possible to read genomes (i.e., to retrieve the information) and process this data easily. To overcome the challenges associated with developing new technologies for DNA data storage, a message encoding and decoding exercise was conducted at a Brazilian research center. The exercise performed consisted of synthesizing oligonucleotides by the phosphoramidite route. An encoded message, using a coding scheme that adheres to DNA sequence constraints, was synthesized. After synthesis, the oligonucleotide was sequenced and decoded, and the information was fully recovered.

3.
Heliyon ; 10(2): e24483, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298720

RESUMO

A laccase-based catalytic reactor was developed into a polydimethylsiloxane (PDMS) microfluidic device, allowing the degradation of different concentrations of the emergent pollutant, Bisphenol-A (BPA), at a rate similar to free enzyme. Among the immobilizing agents used, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was capable of immobilizing a more significant amount of the laccase enzyme in comparison to glutaraldehyde (GA), and the passive method (2989, 1537, and 1905 U/mL, respectively). The immobilized enzyme inside the microfluidic device could degrade 55 ppm of BPA at a reaction rate of 0.5309 U/mL*min with a contaminant initial concentration of 100 ppm at room temperature. In conclusion, the design of a microfluidic device and the immobilization of the laccase enzyme successfully allowed a high capacity of BPA degradation.

4.
HardwareX ; 16: e00493, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045919

RESUMO

Although microparticles are frequently used in chemistry and biology, their effectiveness largely depends on the homogeneity of their particle size distribution. Microfluidic devices to separate and purify particles based on their size have been developed, but many require expensive cleanroom manufacturing processes. A cost-effective, passive microfluidic separator is presented, capable of efficiently sorting and purifying particles spanning the size range of 15 µm to 40 µm. Fabricated from Polymethyl Methacrylate (PMMA) substrates using laser ablation, this device circumvents the need for cleanroom facilities. Prior to fabrication, rigorous optimization of the device's design was carried out through computational simulations conducted in COMSOL Multiphysics. To gauge its performance, chitosan microparticles were employed as a test case. The results were notably promising, achieving a precision of 96.14 %. This quantitative metric underscores the device's precision and effectiveness in size-based particle separation. This low-cost and accessible microfluidic separator offers a pragmatic solution for laboratories and researchers seeking precise control over particle sizes, without the constraints of expensive manufacturing environments. This innovation not only mitigates the limitations tied to traditional cleanroom-based fabrication but also widens the horizons for various applications within the realms of chemistry and biology.

5.
World J Stem Cells ; 15(6): 632-653, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37424947

RESUMO

BACKGROUND: Induced pluripotent stem cells (iPSCs) show great ability to differentiate into any tissue, making them attractive candidates for pathophysiological investigations. The rise of organ-on-a-chip technology in the past century has introduced a novel way to make in vitro cell cultures that more closely resemble their in vivo environments, both structural and functionally. The literature still lacks consensus on the best conditions to mimic the blood-brain barrier (BBB) for drug screening and other personalized therapies. The development of models based on BBB-on-a-chip using iPSCs is promising and is a potential alternative to the use of animals in research. AIM: To analyze the literature for BBB models on-a-chip involving iPSCs, describe the microdevices, the BBB in vitro construction, and applications. METHODS: We searched for original articles indexed in PubMed and Scopus that used iPSCs to mimic the BBB and its microenvironment in microfluidic devices. Thirty articles were identified, wherein only 14 articles were finally selected according to the inclusion and exclusion criteria. Data compiled from the selected articles were organized into four topics: (1) Microfluidic devices design and fabrication; (2) characteristics of the iPSCs used in the BBB model and their differentiation conditions; (3) BBB-on-a-chip reconstruction process; and (4) applications of BBB microfluidic three-dimensional models using iPSCs. RESULTS: This study showed that BBB models with iPSCs in microdevices are quite novel in scientific research. Important technological advances in this area regarding the use of commercial BBB-on-a-chip were identified in the most recent articles by different research groups. Conventional polydimethylsiloxane was the most used material to fabricate in-house chips (57%), whereas few studies (14.3%) adopted polymethylmethacrylate. Half the models were constructed using a porous membrane made of diverse materials to separate the channels. iPSC sources were divergent among the studies, but the main line used was IMR90-C4 from human fetal lung fibroblast (41.2%). The cells were differentiated through diverse and complex processes either to endothelial or neural cells, wherein only one study promoted differentiation inside the chip. The construction process of the BBB-on-a-chip involved previous coating mostly with fibronectin/collagen IV (39.3%), followed by cell seeding in single cultures (36%) or co-cultures (64%) under controlled conditions, aimed at developing an in vitro BBB that mimics the human BBB for future applications. CONCLUSION: This review evidenced technological advances in the construction of BBB models using iPSCs. Nonetheless, a definitive BBB-on-a-chip has not yet been achieved, hindering the applicability of the models.

6.
Talanta ; 256: 124277, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738622

RESUMO

Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL-1 (r2 = 0.982), with a limit of detection of 0.48 pg mL-1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.


Assuntos
Culicidae , Infecção por Zika virus , Zika virus , Animais , Humanos , Infecção por Zika virus/diagnóstico , Imunoensaio , Anticorpos Antivirais
7.
Talanta, v. 256, 124277, jan. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4792

RESUMO

Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL−1 (r2 = 0.982), with a limit of detection of 0.48 pg mL−1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.

8.
Cells ; 11(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36231063

RESUMO

This systematic review aimed to analyze the development and functionality of microfluidic concentration gradient generators (CGGs) for toxicological evaluation of different biological organisms. We searched articles using the keywords: concentration gradient generator, toxicity, and microfluidic device. Only 33 of the 352 articles found were included and examined regarding the fabrication of the microdevices, the characteristics of the CGG, the biological model, and the desired results. The main fabrication method was soft lithography, using polydimethylsiloxane (PDMS) material (91%) and SU-8 as the mold (58.3%). New technologies were applied to minimize shear and bubble problems, reduce costs, and accelerate prototyping. The Christmas tree CGG design and its variations were the most reported in the studies, as well as the convective method of generation (61%). Biological models included bacteria and nematodes for antibiotic screening, microalgae for pollutant toxicity, tumor and normal cells for, primarily, chemotherapy screening, and Zebrafish embryos for drug and metal developmental toxicity. The toxic effects of each concentration generated were evaluated mostly with imaging and microscopy techniques. This study showed an advantage of CGGs over other techniques and their applicability for several biological models. Even with soft lithography, PDMS, and Christmas tree being more popular in their respective categories, current studies aim to apply new technologies and intricate architectures to improve testing effectiveness and reduce common microfluidics problems, allowing for high applicability of toxicity tests in different medical and environmental models.


Assuntos
Poluentes Ambientais , Dispositivos Lab-On-A-Chip , Animais , Antibacterianos , Dimetilpolisiloxanos , Peixe-Zebra
9.
Talanta ; 233: 122514, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215129

RESUMO

Channel-based microfluidic devices integrating the separation step and detection system are key factors to expand microanalysis application. However, these devices still depend on macroscale external equipment for pre-treatment of the sample, separation, or detection. The integration of all steps in only one stage is critical to improving feasibility. Herein, we use a low-cost protocol to solve part of the challenge by designing a dual-mode system onto single polydimethylsiloxane (PDMS)-based platform - overall dimensions of 65 mm length × 20 mm width × 14 mm height and the inner diameter of 297±10 µm height × 605±19 µm width - for column-free separation and simultaneous detection. As a proof-of-concept, we used this all-in-one PDMS platform to separate - without the packet-based phase - and determine salicylic acid (SA) and caffeine (CAF) with a detection limit of 0.20 and 0.18 µmol L-1 and quantification limit of 0.70 and 0.60 µmol L-1 for SA and CAF, respectively. We separated the mixture using forced convection into a chemically treated microchannel while detecting the analytes in amperometric mode. Here, we report new insights into how integrating analytes separation and further electroanalysis into a single miniaturized device.


Assuntos
Dimetilpolisiloxanos , Dispositivos Lab-On-A-Chip
10.
Anal Chim Acta ; 1147: 116-123, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33485570

RESUMO

This study reports a new electrochemical method for tryptamine determination using a paper-based microfluidic device and a thermoplastic electrode (TPE) as an amperometric detector. Tryptamine (Tryp) is a biogenic amine present in drinks and foods. Even though this compound has some beneficial effects on human health, the ingestion of foods with high concentrations of Tryp may be detrimental, which justifies the need for monitoring the Tryp levels. The TPEs were made from 50% carbon black and 50% polycaprolactone and characterized by cyclic voltammetry, demonstrating enhancement in the analytical response compared to other carbon composites. TPEs also showed a better antifouling effect for Tryp compared to conventional glassy carbon electrodes. Once characterized, the electrodes were incorporated into the microfluidic device to determine Tryp in water and cheese samples using amperometry. A linear range was achieved from 10 to 75 µmol L-1 with limits of detection and quantification of 3.2 and 10.5 µmol L-1, respectively. Therefore, this work shows promising findings of the electrochemical determination of Tryp, bringing valuable results regarding the electrochemical properties of thermoplastic composites.


Assuntos
Técnicas Eletroquímicas , Dispositivos Lab-On-A-Chip , Carbono , Eletrodos , Humanos , Triptaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA