Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceutics ; 16(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543321

RESUMO

The topical use of sunscreens is recommended for avoiding the damaging effects of UV radiation. However, improvements are still needed in the existing products to enhance their photoprotection effectiveness and safety. This involves minimizing the use of chemical UV filters while providing enhanced and prolonged photoprotection. This work investigated novel sunscreen formulations and their UV protection effects by encapsulating Uvinul® A, Tinosorb® S, and Uvinul® T150 into nanostructured lipid carriers (NLCs) based on bacuri butter and raspberry seed oil. First, the impact of critical formulation and process parameters on NLCs' particle size was evaluated using a 22 Face Centered Central Composite Design. Then, formulations were evaluated in terms of critical quality factors, in vitro skin permeation, and in vitro and in vivo photoprotection activities. The developed NLCs-containing formulations exhibited appropriate size (122-135 nm), PdI (<0.3), encapsulation efficiency (>90%), and drug content (>80%), which were preserved for at least 90 days under different stability conditions. Moreover, these NLCs-based formulations had equivalent skin permeation to emulsion-based controls, and the addition of NLCs into sunscreen cream bases in the optimum proportion of 20% (w/w) resulted in enhanced UVA and UVB photoprotection levels, despite a 10% reduction in the total filters content. Altogether, these results describe the application of nanoencapsulated organic UV filters in innovative sunscreen formulations to achieve superior photoprotection and cosmeceutical properties.

2.
Nanomedicine (Lond) ; 19(4): 293-301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270378

RESUMO

Background: Leishmaniasis, caused by the protozoan Leishmania sp., infects phagocyte cells present in lymphatic organs. This study demonstrates the influence of nanostructured lipid carrier-loaded hydroxymethylnitrofurazone (NLC-NFOH) on lymphatic uptake using a chylomicron-blocking flow model in rats. Method: Lymphatic uptake of NFOH was assessed 1 h after oral administration of dimethyl sulfoxide with NFOH or NLC-NFOH with and without cycloheximide pretreatment. Result: Dimethyl sulfoxide with NFOH and NLC-NFOH showed NFOH serum concentrations of 0.0316 and 0.0291 µg/ml, respectively. After chylomicron blocking, NFOH was not detected. Conclusion: Despite log P below 5, NFOH was successfully taken up by the lymphatic system. Long-chain fatty acids and particle size might be main factors in these findings. NLC-NFOH is a promising and convenient platform for treating leishmaniasis via oral administration.


Assuntos
Leishmaniose , Nanoestruturas , Nitrofurazona/análogos & derivados , Ratos , Animais , Dimetil Sulfóxido , Quilomícrons , Administração Oral , Portadores de Fármacos , Tamanho da Partícula
3.
Biomedicines ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38137569

RESUMO

Curcumin is a highly promising substance for treating burns, owing to its anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. However, its therapeutic use is restricted due to its hydrophobic nature and low bioavailability. This study was conducted to address these limitations; it developed and tested two types of lipid nanocarriers, namely nanoemulsions (NE-CUR) and nanostructured lipid carriers (NLC-CUR) loaded with curcumin, and aimed to identify the most suitable nanocarrier for skin burn treatment. The study evaluated various parameters, including physicochemical characteristics, stability, encapsulation efficiency, release, skin permeation, retention, cell viability, and antimicrobial activity. The results showed that both nanocarriers showed adequate size (~200 nm), polydispersity index (~0.25), and zeta potential (~>-20 mV). They also showed good encapsulation efficiency (>90%) and remained stable for 120 days at different temperatures. In the release test, NE-CUR and NCL-CUR released 57.14% and 51.64% of curcumin, respectively, in 72 h. NE-CUR demonstrated better cutaneous permeation/retention in intact or scalded skin epidermis and dermis than NLC-CUR. The cell viability test showed no toxicity after treatment with NE-CUR and NLC-CUR up to 125 µg/mL. Regarding microbial activity assays, free curcumin has activity against P. aeruginosa, reducing bacterial growth by 75% in 3 h. NE-CUR inhibited bacterial growth by 65% after 24 h, and the association with gentamicin had favorable results, while NLC-CUR showed a lower inhibition. The results demonstrated that NE-CUR is probably the most promising nanocarrier for treating burns.

4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958867

RESUMO

The skin is essential to the integrity of the organism. The disruption of this organ promotes a wound, and the organism starts the healing to reconstruct the skin. Copaifera langsdorffii is a tree used in folk medicine to treat skin affections, with antioxidant and anti-inflammatory properties. In our study, the oleoresin of the plant was associated with nanostructured lipid carriers, aiming to evaluate the healing potential of this formulation and compare the treatment with reference drugs used in wound healing. Male Wistar rats were used to perform the excision wound model, with the macroscopic analysis of wound retraction. Skin samples were used in histological, immunohistochemical, and biochemical analyses. The results showed the wound retraction in the oleoresin-treated group, mediated by α-smooth muscle actin (α-SMA). Biochemical assays revealed the anti-inflammatory mechanism of the oleoresin-treated group, increasing interleukin-10 (IL-10) concentration and decreasing pro-inflammatory cytokines. Histopathological and immunohistochemical results showed the improvement of re-epithelialization and tissue remodeling in the Copaifera langsdorffii group, with an increase in laminin-γ2, a decrease in desmoglein-3 and an increase in collagen remodeling. These findings indicate the wound healing potential of nanostructured lipid carriers associated with Copaifera langsdorffii oleoresin in skin wounds, which can be helpful as a future alternative treatment for skin wounds.


Assuntos
Fabaceae , Reepitelização , Ratos , Animais , Ratos Wistar , Pele/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fabaceae/química , Lipídeos
5.
Colloids Surf B Biointerfaces ; 230: 113491, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37574615

RESUMO

The coenzyme Q10 is a compound widely used in pharmaceutical and cosmetic formulations because it is a potent eliminator of free radicals, giving it antioxidant and anti-aging properties. It is naturally synthesized by the human body, but its production wanes with age, leading to the formation of wrinkles. The efficacy of topical application of the coenzyme to counteract this process is subject to several difficulties, due to its instability in the presence of light, low solubility in water and high lipophilicity. Because of these drawbacks, many studies have been conducted of release systems. Lipid nanoparticles stand out in this sense due to the advantages of skin compatibility, protection of the active ingredient against degradation in the external medium, capacity to increase penetration of that ingredient in the skin, and its controlled and prolonged release. In this context, this article presents a review of the main studies of the coenzyme Q10 encapsulated in lipid nanoparticles for topical use, focusing on the analytic methods used to characterize the systems regarding morphology, zeta potential, release profile, Q10 content, encapsulation efficiency, crystalline organization and structure of the lipid matrix, rheology, antioxidant activity, skin penetration and efficacy, among other aspects. We also describe the main results of the different studies and discuss the critical aspects - the simplest, most reproducible, best, and most relevant - that characterize lipid nanoparticles with encapsulated Q10 for topical use.


Assuntos
Portadores de Fármacos , Nanopartículas , Humanos , Portadores de Fármacos/química , Ubiquinona/farmacologia , Ubiquinona/química , Lipossomos , Nanopartículas/química , Antioxidantes/farmacologia , Tamanho da Partícula
6.
Pharmaceutics ; 15(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36986612

RESUMO

Cancer is one of the major public health problems worldwide. Despite the advances in cancer therapy, it remains a challenge due to the low specificity of treatment and the development of multidrug resistance mechanisms. To overcome these drawbacks, several drug delivery nanosystems have been investigated, among them, magnetic nanoparticles (MNP), especially superparamagnetic iron oxide nanoparticles (SPION), which have been applied for treating cancer. MNPs have the ability to be guided to the tumor microenvironment through an external applied magnetic field. Furthermore, in the presence of an alternating magnetic field (AMF) this nanocarrier can transform electromagnetic energy in heat (above 42 °C) through Néel and Brown relaxation, which makes it applicable for hyperthermia treatment. However, the low chemical and physical stability of MNPs makes their coating necessary. Thus, lipid-based nanoparticles, especially liposomes, have been used to encapsulate MNPs to improve their stability and enable their use as a cancer treatment. This review addresses the main features that make MNPs applicable for treating cancer and the most recent research in the nanomedicine field using hybrid magnetic lipid-based nanoparticles for this purpose.

7.
Life (Basel) ; 13(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36676095

RESUMO

Mosquito-borne diseases affect millions of people worldwide each year, and the use of a topically applied insect repellent is an economically viable preventative health practice. The general objective of this work was to encapsulate citronella oil (CO) in a nanostructured lipid carrier (NLC) to formulate a topical repellent with a long duration of efficacy on the skin and a good safety profile based on minimizing skin penetration. In the studied CO, the main chemical constituents of geraniol, citronellal, and citronellol were identified and subsequently used as markers for the in vitro skin permeation testing (IVPT). An optimal NLC encapsulating CO formulation was developed and had an average particle size of 350 nm. The NLC was then formulated in combination with CO at ratios of 2:1, 1:1, and 1:2 CO:NLC-CO as oil-in-water (O/W) emulsions and compared to CO in the same O/W emulsion base (all at 10% CO in the final O/W topical formulation). The markers geraniol, citronellol, and citronellal were detected in all samples tested F1 (10% CO in O/W emulsion) and F3 (10% CO/NLC-CO 1:1 in O/W emulsion). Even the percentages of F3 markers were higher than F1. The recovery of the percentage balance (based on the total remaining on the skin surface, on the skin, and penetrated through the skin to the receptor) of geraniol, citronellol, and citronellal markers for F1 and F3 was 7.70% and 11.96%; 25.51% and 31.89%; and 5.09% and 4.40%, respectively. The nanoparticle lipid solid forms a repellent reservoir on the skin surface, releasing the active ingredients slowly through volatilization, extending the repellent action, and reducing permeation through the skin. It is possible to assume that the remaining 92.30% and 88.03%; 74.49% and 68.11%; and 94.10% and 95.60% of geraniol, citronellol, and citronellal markers of F1 and F3, respectively, were lost to evaporation. In the in vivo efficacy test carried out with the Aedes aegypti mosquito, F3 was the optimal formulation, providing the greatest repellent action compared to free oil in O/W emulsion. Thermal analysis showed that the NLC-CO raised the boiling point of the encapsulated CO compared to the free oil, suggesting that the controlled release of the CO was a possible mechanism for its prolonged effect. We concluded that the nanocarriers developed with CO were stable and provided improved mosquito-repellent efficacy with minimal skin penetration of the CO actives over 24 h. Indeed, regardless of whether the CO was applied as free oil, a 1:1 mixture of CO (pure/free oil) or NLC-CO applied in an O/W emulsion can be considered safe for topical application due to minimal skin penetration.

8.
J Control Release ; 352: 712-725, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374787

RESUMO

Breast cancer is the type of cancer with the highest incidence in women around the world. Noteworthy, the triple-negative subtype affects 20% of the patients while presenting the highest death rate among subtypes. This is due to its aggressive phenotype and the capability of invading other tissues. In general, tumor-associated macrophages (TAM) and other immune cells, are responsible for maintaining a favorable tumor microenvironment for inflammation and metastasis by secreting several mediators such as pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α, chemokines like CCL2, and other proteins, as metalloproteinases of matrix (MMP). On the other hand, immunomodulatory agents can interfere in the immune response of TAM and change the disease prognosis. In this work, we prepared nanostructured lipid carriers containing kaurenoic acid (NLC-KA) to evaluate the effect on cytokine production in vitro of bone marrow-derived macrophages (BMDM) and the migratory process of 4 T1 breast cancer cells. NLC-KA prepared from a blend of natural lipids was shown to have approximately 90 nm in diameter with low polydispersity index. To test the effect on cytokine production in vitro in NLC-KA treated BMDM, ELISA assay was performed and pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified. The formulation reduced the secretion of IL-1ß and TNF-α cytokines while presenting no hemolytic activity. Noteworthy, an anti-migratory effect in 4 T1 breast cancer cells treated with NLC-KA was observed in scratch assays. Further, MMP9 and CCL2 gene expressions in both BMDM and 4 T1 treated cells confirmed that the mechanism of inhibition of migration is related to the blockade of this pathway by KA. Finally, cell invasion assays confirmed that NLC-KA treatment resulted in less invasiveness of 4 T1 cells than control, and it is independent of CCL2 stimulus or BMDM direct stimulus. Ultimately, NLC-KA was able to regulate the cytokine production in vitro and reduce the migration of 4 T1 breast cancer cells by decreasing MMP9 gene expression.


Assuntos
Neoplasias , Fator de Necrose Tumoral alfa , Feminino , Animais , Fator de Necrose Tumoral alfa/metabolismo , Metaloproteinase 9 da Matriz , Interleucina-6 , Citocinas/genética , Expressão Gênica , Movimento Celular
9.
Front Chem ; 10: 908386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059881

RESUMO

Pharmacological treatments of central nervous system diseases are always challenging due to the restrictions imposed by the blood-brain barrier: while some drugs can effectively cross it, many others, some antiepileptic drugs among them, display permeability issues to reach the site of action and exert their pharmacological effects. The development of last-generation therapeutic nanosystems capable of enhancing drug biodistribution has gained ground in the past few years. Lipid-based nanoparticles are promising systems aimed to improve or facilitate the passage of drugs through biological barriers, which have demonstrated their effectiveness in various therapeutic fields, without signs of associated toxicity. In the present work, nanostructured lipid carriers (NLCs) containing the antiepileptic drug phenobarbital were designed and optimized by a quality by design approach (QbD). The optimized formulation was characterized by its entrapment efficiency, particle size, polydispersity index, and Z potential. Thermal properties were analyzed by DSC and TGA, and morphology and crystal properties were analyzed by AFM, TEM, and XRD. Drug localization and possible interactions between the drug and the formulation components were evaluated using FTIR. In vitro release kinetic, cytotoxicity on non-tumoral mouse fibroblasts L929, and in vivo anticonvulsant activity in an animal model of acute seizures were studied as well. The optimized formulation resulted in spherical particles with a mean size of ca. 178 nm and 98.2% of entrapment efficiency, physically stable for more than a month. Results obtained from the physicochemical and in vitro release characterization suggested that the drug was incorporated into the lipid matrix losing its crystalline structure after the synthesis process and was then released following a slower kinetic in comparison with the conventional immediate-release formulation. The NLC was non-toxic against the selected cell line and capable of delivering the drug to the site of action in an adequate amount and time for therapeutic effects, with no appreciable neurotoxicity. Therefore, the developed system represents a promising alternative for the treatment of one of the most prevalent neurological diseases, epilepsy.

10.
Eur J Pharm Sci ; 169: 106097, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910988

RESUMO

Leishmaniasis, a neglected tropical disease, is prevalent in 98 countries with the occurrence of 1.3 million new cases annually. The conventional therapy for visceral leishmaniasis requires hospitalization due to the severe adverse effects of the drugs, which are administered parenterally. Buparvaquone (BPQ) showed in vitro activity against leishmania parasites; nevertheless, it has failed in vivo tests due to its low aqueous solubility. Though, lipid nanoparticles can overcome this holdback. In this study we tested the hypothesis whether BPQ-NLC shows in vivo activity against L. infantum. Two optimized formulations were prepared (V1: 173.9 ± 1.6 nm, 0.5 mg of BPQ/mL; V2: 232.4 ± 1.6 nm, 1.3 mg of BPQ/mL), both showed increased solubility up to 73.00-fold, and dissolution up to 83.29%, while for the free drug it was only 2.89%. Cytotoxicity test showed their biocompatibility (CC50 >554.4 µM). Besides, the V1 dose of 0.3 mg/kg/day for 10 days reduced the parasite burden in 83.4% ±18.2% (p <0.05) in the liver. BPQ-NLC showed similar leishmanicidal activity compared to miltefosine. Therefore, BPQ-NLC is a promising addition to the limited therapeutic arsenal suitable for leishmaniasis oral administration treatment.


Assuntos
Antiprotozoários , Leishmania infantum , Administração Oral , Antiprotozoários/uso terapêutico , Lipídeos , Lipossomos , Nanopartículas , Naftoquinonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA