Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 983
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39108119

RESUMO

Ferulic acid is a widely distributed phenolic substance with diverse bioactive properties, which has been widely used in the pharmaceutical, food, and cosmetic industries. Wounds are complex skin lesions to treat and their treatment is long and costly. This encourages the search for alternative treatments, especially in the area of bioactive substances of natural origin. AIMS: This work aims to make a bibliographic survey on studies of the use of ferulic acid in the treatment of wounds. RESULTS: The studies found show that ferulic acid acts through different mechanisms of action such as antioxidant, anti-inflammatory, antimicrobial, collagen production, angiogenic, and reepithelialization effects. These properties act synergistically in different stages of healing, which differentiates it from conventional treatments. In addition, ferulic acid has dermal absorption, low skin metabolism, and low toxicity. CONCLUSION: Studies in this area are recent and further research is needed to expand the possibilities and therapeutic efficiency of ferulic acid in wound healing.

2.
Beilstein J Org Chem ; 20: 1800-1816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109298

RESUMO

Antimicrobial resistance presents a substantial threat to global public health, demanding urgent attention and action. This study focuses on lanthipeptides, ribosomally encoded peptides that display significant structural diversity and hold promising potential as antibiotics. Genome mining was employed to locate biosynthetic gene clusters (BGCs) containing class II lanthipeptide synthetases encoded by lanM genes. A phylogenetic study analyzing homologous sequences of functional LanM sequences revealed a unique evolutionary clade of 17 LanM proteins associated with 12 Clostridium bacterial genomes. In silico exploration identified nine complete BGCs, including one super-cluster containing two co-localized operons from Clostridium cellulovorans 743B, that encode for two new peptides named clostrisin and cellulosin. Each operon was heterologously expressed in Escherichia coli. Molecular weights associated with the expected post-translational modifications of the purified lanthipeptide were confirmed by MS-MS/MS analysis for cellulosin, while clostrisin was not post-translationally modified. Both peptides demonstrated antimicrobial activity against multidrug-resistant bacteria, such as a clinical strain of Staphylococcus epidermidis MIQ43 and Pseudomonas aeruginosa PA14. This is the first report of lanthipeptides from the Clostridium genus produced with its native biosynthetic machinery, as well as chemically and biologically characterized. This study showcases the immense potential of genome mining in identifying new RiPP synthetases and associated bioactive peptides.

3.
Future Microbiol ; : 1-12, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101446

RESUMO

Aim: Evaluate the anticandidal effect of Croton heliotropiifolius Kunth essential oil and its interaction with azoles and N-acetylcysteine (NAC) against planktonic cells and biofilms. Materials & methods: Broth microdilution and checkerboard methods were used to evaluate the individual and combined activity with fluconazole and itraconazole (ITRA). The antibiofilm effect of the oil was assessed in 96-well plates alone and combined with ITRA and NAC, and cytotoxicity determined by MTT. Results: The oil inhibited all Candida species growth. The activity was enhanced when associated with ITRA and NAC for planktonic cells and biofilms in formation. The effective concentrations were lower than the toxic ones to V79 cells. Conclusion: C. heliotropiifolius Kunth essential oil is an anticandidal alternative, and can be associated with ITRA and NAC.


Candida is a type of fungus that can cause disease in people. In recent years, the number of available drugs to treat this disease have declined. It is important to search for new drugs. Plants are often used to improve health, so we tested the essential oil of a plant called Croton heliotropiifolius to see if it could kill the fungus. We found that the essential oil could kill the fungus, and could be used with other drugs to improve their effects.

4.
Molecules ; 29(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124942

RESUMO

Secondary metabolites produced by fungi are well known for their biological properties, which play important roles in medicine. These metabolites aid in managing infections and treating chronic illnesses, thereby contributing substantially to human health improvement. Despite this extensive knowledge, the vast biodiversity and biosynthetic potential of fungi is still largely unexplored, highlighting the need for further research in natural products. In this review, several secondary metabolites of fungal origin are described, emphasizing novel structures and skeletons. The detection and characterization of these metabolites have been significantly facilitated by advancements in analytical systems, particularly modern hyphenated liquid chromatography/mass spectrometry. These improvements have primarily enhanced sensitivity, resolution, and analysis flow velocity. Since the in vitro production of novel metabolites is often lower than the re-isolation of known metabolites, understanding chromatin-based alterations in fungal gene expression can elucidate potential pathways for discovering new metabolites. Several protocols for inducing metabolite production from different strains are discussed, demonstrating the need for uniformity in experimental procedures to achieve consistent biosynthetic activation.


Assuntos
Produtos Biológicos , Cromatina , Fungos , Fungos/metabolismo , Cromatina/metabolismo , Produtos Biológicos/metabolismo , Metabolismo Secundário , Humanos
5.
Artigo em Inglês | MEDLINE | ID: mdl-39136738

RESUMO

Euphorbiaceae is a family of dicotyledonous angiosperm plants that occur mainly in the tropics and produce a variety of secondary metabolites. Given the abundance of the Euphorbiaceae species and the diversity of substances they produce, this study aims to investigate paten documents concerning inventions and models involving the pharmacological use of these species, contributing to the study of their medicinal potential. The present review delves into patent documents in the Patentscope database, from the application of search criteria, such as "simple search" with the "Euphorbiaceae" keyword, limited to the front page, with stemming, without language limitation, from any patent office, and excluding non-patent literature (NPL). The selected patents were prevalently published in East Asian offices between 1998 and 2023, including 41 species of Euphorbiaceae of 19 genera, with 31 metabolites represented. The collected metabolites predominantly exhibited anti-tumoral (N = 21), anti-inflammatory (N = 10), antioxidant (N = 7), and anti-bacterial (N = 6) activities. Additionally, some substances have shown valid properties for treating non-communicable diseases (N = 8). The patents demonstrate the biotechnological potential of species from the Euphorbiaceae family, which are exceptionally satile regarding their applications in the health sector. However, the small number of patents that identify specific metabolites hinders a more thorough investigation of the activities of the products extracted from these species.

6.
Pharmaceutics ; 16(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065609

RESUMO

In 2019, the emergence of the seventh known coronavirus to cause severe illness in humans triggered a global effort towards the development of new drugs and vaccines for the SARS-CoV-2 virus. These efforts are still ongoing in 2024, including the present work where we conducted a ligand-based virtual screening of terpenes with potential anti-SARS-CoV-2 activity. We constructed a Quantitative Structure-Activity Relationship (QSAR) model from compounds with known activity against SARS-CoV-2 with a model accuracy of 0.71. We utilized this model to predict the activity of a series of 217 terpenes isolated from the Fabaceae family. Four compounds, predominantly triterpenoids from the lupane series, were subjected to an in vitro phenotypic screening in Vero CCL-81 cells to assess their inhibitory activity against SARS-CoV-2. The compounds which showed high rates of SARS-CoV-2 inhibition along with substantial cell viability underwent molecular docking at the SARS-CoV-2 main protease, papain-like protease, spike protein and RNA-dependent RNA polymerase. Overall, virtual screening through our QSAR model successfully identified compounds with the highest probability of activity, as validated using the in vitro study. This confirms the potential of the identified triterpenoids as promising candidates for anti-SARS-CoV-2 therapeutics.

7.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065807

RESUMO

The need for new drugs to treat human infections is a global health concern. Diseases like tuberculosis, trypanosomiasis, amoebiasis, and AIDS remain significant problems, especially in developing countries like Mexico. Despite existing treatments, issues such as resistance and adverse effects drive the search for new alternatives. Herein, we introduce the NUATEI research consortium, made up of experts from the Institute of Biomedical Research at UNAM, who identify and obtain natural and synthetic compounds and test their effects against human pathogens using in vitro and in vivo models. The consortium has evaluated hundreds of natural extracts and compounds against the pathogens causing tuberculosis, trypanosomiasis, amoebiasis, and AIDS, rendering promising results, including a patent with potential for preclinical studies. This paper presents the rationale behind the formation of this consortium, as well as its objectives and strategies, emphasizing the importance of natural and synthetic products as sources of antimicrobial compounds and the relevance of the diseases studied. Finally, we briefly describe the methods of the evaluation of the compounds in each biological model and the main achievements. The potential of the consortium to screen numerous compounds and identify new therapeutic agents is highlighted, demonstrating its significant contribution to addressing these infectious diseases.

8.
Antibiotics (Basel) ; 13(7)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39061356

RESUMO

In response to the steady increase in antimicrobial-resistant strains, the World Health Organisation has emphasised the need to investigate new antimicrobial agents and alternative therapies that improve the spectrum of activity and reduce the dose required, thus improving safety. This study focused on the characterisation of Acanthospermum australe essential oil and green-synthesis silver nanoparticles (AgNP), evaluating their cytotoxicity in human cells, antimicrobial activity and synergistic effect against pathogens causing skin infections. The main components of the essential oil were germacrene A (24.07%), γ-cadinene (21.47%) and trans-caryophyllene (14.97%). Spherical AgNP with a diameter of 15 ± 3 nm were synthesised. The essential oil showed antimicrobial activity against dermatophytes and Malassezia globosa, while AgNP were found to be active against bacteria, yeasts and dermatophytes. Both compounds were found to be primarily non-cytotoxic at the concentrations required to inhibit microbial growth. Furthermore, the combined use of essential oil and AgNP showed a synergistic antimicrobial effect against dermatophytes and M. globosa. In conclusion, the results suggest that the combined use of bioactive compounds from natural sources, such as essential oil and biogenic AgNP, has the potential to improve antimicrobial efficacy against specific skin pathogens, particularly Microsporum canis, Nannizzia gypsea and M. globosa.

9.
Mol Inform ; 43(7): e202400052, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994633

RESUMO

Compound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product-likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product-likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small-molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.


Assuntos
Produtos Biológicos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , América Latina , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Quimioinformática , Bases de Dados de Compostos Químicos
10.
Curr Drug Targets ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38967077

RESUMO

Neglected diseases are a group of infectious diseases, many of them parasitic, that mainly affect the poorest populations with limited access to health services, especially those living in remote rural areas and slums. According to the World Health Organization (WHO), neglected diseases put the lives of more than 200 million people at risk, and treatment is made difficult by the occurrence of resistance to existing medications, as well as the high level of toxicity. In this way, the potential of multitarget compounds is highlighted, defined as compounds designed to modulate multiple targets of relevance to disease, with the overall goal of enhancing efficacy and/or improving safety. Thus, the objective of our study is to evaluate existing multi-target compound approaches for neglected diseases, with an emphasis on Leishmaniasis, Chagas Disease, and Arboviruses. A literature review was performed by searching the database "Web of Sciences". In relation to the diseases covered in this work, Leishmaniasis, individually, was the one that presented the largest number of articles (11) that dealt with the topic, which can be justi-fied by the high prevalence of this disease in the world, the second most common disease was Dengue, followed by Chagas disease, Chikungunya virus, and Zika virus. Furthermore, the multi-target potential of phenolic compounds was observed in all diseases under study, with the mecha-nisms related to the nucleus and transcription being the most reported mechanisms. From this per-spective, it is worth highlighting the effectiveness of approaches related to multitarget drugs in discovering new therapeutic agents for neglected diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA