Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(7): e27526, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586377

RESUMO

Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.

2.
Toxics ; 10(9)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36136496

RESUMO

Mercury is a ubiquitous pollutant in the environment with potential neurotoxic effects. Several populations are susceptible to mercurial exposure, especially methylmercury (MeHg) at low doses for long periods through food consumption. Given this, the present work aimed to assess the effects of long-term MeHg exposure on the cerebellum of rats from a translational perspective using a representative dose, assessing molecular, biochemical, morphological, and behavioral parameters. The model was produced by administering 40 µg/kg of MeHg for 60 days to adult male Wistar rats by oral gavage. As a result of this exposure, the animals presented motor deficits in open field and rotarod tests which were associated with an increase in total mercury content in cerebellar parenchyma, a reduction in antioxidant competence against peroxyl radicals, and increased nitrite and lipid peroxidation levels. The proteomic approach showed 317 modulated proteins. Such findings were associated with reductions in mature neuron and Purkinje cell densities and glial fibrillary acidic protein immunostained areas and increased microglial density. In addition, decreases in myelin basic protein and synaptophysin immunostaining were also observed. The results thus provided new evidence of the mechanisms underlying complex MeHg-induced neurodegeneration, especially the proteins underlying the biochemical and morphological features associated with motor dysfunction.

3.
Toxicol Rep ; 9: 563-574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392159

RESUMO

The environmental contamination by methylmercury (MeHg) is a major concern for public health. The effects of MeHg in the central nervous system (CNS) of adult animals have been extensively investigated; however, little is known about the effects of MeHg exposure during intrauterine and lactation periods on motor and cognitive functions of adolescent rats. Therefore, this study aimed to investigate the effect of MeHg exposure during intrauterine life and lactation on both motor and cognitive functions of offspring rats. Ten female Wistar rats were exposed to 40 µg/kg/day of MeHg through cookie treats from the first day of pregnancy until the last day of breastfeeding. Both motor and cognitive functions of offspring male rats were assessed by open field, rotarod, and step-down inhibitory avoidance tests. Forty-one days after birth, the hippocampus and cerebellum were collected to determine total Hg content, antioxidant capacity against peroxyl radicals (ACAP), reduced glutathione (GSH) levels, lipid peroxidation (LPO), and nitrite levels. MeHg exposure during CNS development increased Hg levels in both hippocampal and cerebellar parenchymas, triggered oxidative stress throughout ACAP and GSH decrease, increased LPO and nitrite levels. These alterations resulted in reduced spontaneous and stimulated locomotion and short- and long-term memory deficits. Therefore, damages triggered by MeHg exposure during intrauterine life and lactation had detrimental effects on oxidative biochemistry and motor and cognitive functions of offspring rats.

4.
Sci Total Environ ; 819: 153095, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35038519

RESUMO

Recent studies have shown guanylurea (GUA) alters the growth and development of fish, induces oxidative stress, and disrupts the levels and expression of several genes, metabolites, and proteins related to the overall fitness of fish. Nonetheless, up to date, no study has assessed the potential neurotoxic effects that GUA may induce in non-target organisms. To fill the current knowledge gaps about the effects of this metabolite in the central nervous system of fish, we aimed to determine whether or not environmentally relevant concentrations of this metabolite may disrupt the behavior, redox status, AChE activity in Danio rerio adults. In addition, we also meant to assess if 25, 50, and 200 µg/L of GUA can alter the expression of several antioxidant defenses-, apoptosis-, AMPK pathway-, and neuronal communication-related genes in the brain of fish exposed for four months to GUA. Our results demonstrated that chronic exposure to GUA altered the swimming behavior of D. rerio, as fish remained more time frozen and traveled less distance in the tank compared to the control group. Moreover, this metabolite significantly increased the levels of oxidative damage biomarkers and inhibited the activity of acetylcholinesterase of fish in a concentration-dependent manner. Concerning gene expression, environmentally relevant concentrations of GUA downregulated the expression GRID2IP, PCDH17, and PCDH19, but upregulated Nrf1, Nrf2, p53, BAX, CASP3, PRKAA1, PRKAA2, and APP in fish after four months of exposure. Collectively, we can conclude that GUA may alter the homeostasis of several essential brain biomarkers, generating anxiety-like behavior in fish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Acetilcolinesterase/metabolismo , Animais , Guanidina/análogos & derivados , Guanidina/metabolismo , Estresse Oxidativo , Ureia/análogos & derivados , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
5.
Environ Sci Pollut Res Int ; 27(29): 36330-36349, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556984

RESUMO

Ecotoxicological studies are necessary in order to evaluate the effects of environmental exposure of chemicals on wild animals and their ecological consequences. Particularly, neurobehavioral effects of heavy metal elements on wild rodents have been scarcely investigated. In the present study, we analyzed the effect of metal bioaccumulation (Pb, As, Mg, Ni, and Zn) in the brain and in the liver on exploratory activity, learning, memory, and on some dopaminergic markers in the wild rodent Liomys irroratus living inside mine tailings, at Huautla, Morelos, Mexico. We found higher Pb concentration but lower Zn in striatum, nucleus accumbens, midbrain, and hippocampus in exposed animals in comparison to rodents from the reference site. Exposed rodents exhibited anxious behavior evaluated in the open field, while no alterations in learning were found. However, they displayed slight changes in the memory test in comparison to reference group. The neurochemical evaluation showed higher levels of dopamine and 5-hydroxyindolacetic acid in midbrain, while lower levels of metabolites dihydroxyphenyl acetic acid and homovanillic acid in striatum of exposed rodents. In addition, mRNA expression levels of dopaminergic D2 receptors in nucleus accumbens were lower in animals from the mining zone than in animals from the reference zone. This is the first study that shows that chronic environmental exposure to metals results in behavioral and neurochemical alterations in the wild rodent L. irroratus, a fact that may comprise the survival of the individuals resulting in long-term effects at the population level. Finally, we suggest the use of L. irroratus as a sentinel species for environmental biomonitoring of mining sites.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Animais , Bioacumulação , Encéfalo , Monitoramento Ambiental , México , Roedores
6.
Artigo em Inglês | MEDLINE | ID: mdl-32169414

RESUMO

The trend toward using plant-based ingredients in aquafeeds has raised important concerns for aquaculture owing to the negative impacts of mycotoxins on fish health; with emphasis for contamination by fumonisin B1 (FB1). The brain is an important target of FB1; however, study of the pathways linked to brain damage is limited to an analysis of histopathological alterations. Reports have demonstrated the protective effects of dietary supplementation with diphenyl diselenide (Ph2Se2) in the brains of fish subjected to several environmental insults; nevertheless, its neuroprotective effects in fish fed with diets contaminated with FB1 remain unknown. Therefore, the aim of this study was to evaluate whether oxidative damage may be a pathway associated with FB1-induced neurotoxicity, as well as to evaluate whether dietary supplementation with Ph2Se2 prevents or reduces FB1-mediated brain oxidative damage in silver catfish. Brain reactive oxygen species (ROS), lipid peroxidation (LOOH) and protein carbonylation increased on day 30 post-feeding in animals that received FB1-contaminated diets compared to the control group, while brain antioxidant capacity against peroxyl radicals (ACAP) levels and catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were lower. Diphenyl diselenide dietary supplementation avoid increases in brain ROS levels, as well minimizing the augmentation of LOOH levels. Furthermore, Ph2Se2 prevented impairment of brain ACAP levels, as well as GPx and GST activities elicited by FB1-contaminated diets. These data suggest that dietary supplementation with 3 mg/kg Ph2Se2 prevented FB1-induced brain damage in silver catfish, and this protective effect occurred through avoided of excessive ROS production, as well as via prevention of brain lipid damage. Furthermore, Ph2Se2 exerted its neuroprotective effects via ameliorative effects on the enzymatic and non-enzymatic antioxidant defense systems, and may be an approach to prevent FB1-induced brain oxidative stress; however, is not an alternative to prevent the impairment on performance caused by FB1.


Assuntos
Antioxidantes , Derivados de Benzeno , Encéfalo , Peixes-Gato/metabolismo , Fumonisinas/toxicidade , Compostos Organosselênicos , Estresse Oxidativo/efeitos dos fármacos , Ração Animal , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Derivados de Benzeno/administração & dosagem , Derivados de Benzeno/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Compostos Organosselênicos/administração & dosagem , Compostos Organosselênicos/farmacologia , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Ecotoxicol Environ Saf ; 194: 110358, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151863

RESUMO

Lead is a toxic metal found in environment with great neurotoxic potential. The main effect is associated with impairments in hippocampus and cerebellum, driving to cognitive and motor dysfunctions, however, there is a lack of evidences about the effects over the spinal cord. In this way, we aimed to investigate in vivo the effects of long-term exposure to lead acetate in oxidative biochemistry and morphology of rats' spinal cord. For this, 36 male Wistar rats (Rattus norvegicus) were divided into the group exposed to 50 mg/kg of lead acetate and control group, which received only distilled water, both groups through intragastric gavage, for 55 days. After the exposure period, the animals were euthanized and the spinal cords were collected to perform the analyses of lead levels quantification, oxidative biochemistry evaluation by levels of malondialdehyde (MDA), nitrites and the antioxidant capacity against peroxyl radicals (ACAP). Besides, morphological evaluation with quantitative analysis of mature and motor neurons and reactivity to myelin basic protein (MBP). Our results showed high levels of lead in spinal cord after long-term exposure; there was a reduction on ACAP level; however, there was no difference observed in MDA and nitrite levels. Moreover, there was a reduction of mature and motor neurons in all three regions, and a reduction of immunolabeling of MBP in the thoracic and lumbar segments. Therefore, we conclude that long-term exposure to lead is able of increasing the levels of the metal in spinal cord, affecting the antioxidant capacity and inducing morphological impairments in spinal cord parenchyma. Our results also suggest that the tissue impairments triggered by lead may be resultant from others molecular mechanisms besides the oxidative stress.


Assuntos
Substâncias Perigosas/toxicidade , Chumbo/toxicidade , Animais , Antioxidantes/metabolismo , Doenças Desmielinizantes , Hipocampo/metabolismo , Masculino , Malondialdeído/metabolismo , Neurônios Motores , Proteína Básica da Mielina , Nitritos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peróxidos , Ratos , Ratos Wistar , Medula Espinal , Testes de Toxicidade
8.
Neurotoxicology ; 78: 21-28, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035075

RESUMO

Nerium oleander Linn. is an Apocynaceae shrub which is among the most toxic ornamental plants. Although seizures are one of the symptoms associated with N. Oleander poisoning in humans, only a few studies are available on the behavioural and electrophysiological alterations caused by this plant poisoning. This study aimed at providing a thorough description of the electroencephalographic (EEG) and electromyographic (EMG) profiles throughout the experimental poisoning of Wistar rats (200-250 g) using ethanolic extract of N. oleander (EENO). Further, seizure control was assessed using different anticonvulsants. Male Wistar rat's behaviour was assessed upon EENO (150 mg/kg) administration and the animals were evaluated for muscle and neural activities through EMG and EEG recordings, respectively. The behavioural test showed two distinct phases of CNS activity: Phase I - myorelaxation and depression, and Phase II - excitability (agitated behaviour and seizures). Such phases were consistent with the EEG and EMG tracing patterns attained. Within the first 400 s of the recordings, during Phase I, the EMG showed no tracing amplitude variation. Later, the tracing pattern was changed and an intensification of the muscle contraction power in higher frequencies was observed during Phase II. The EEG showed initially a slight flattening in the tracings with a reduction in the intensity of the signal as per spectrogram of frequency attained. Thereafter, during Phase II, much higher amplitude tracings could be noted with an intensification of the signal, compatible with seizures. Seizure control was evaluated using four agents: phenytoin, phenobarbital, diazepam and scopolamine (at 10 mg/kg in all cases). While scopolamine was not effective in the seizure control, diazepam was the most efficient drug for the attenuation of the poisoning. Our results indicate the possibility of including phenytoin, phenobarbital and diazepam, mainly the latter, in the poisoning therapeutic protocol, including for those individuals who could be more susceptible to the poisoning by Nerium oleander as in the case of epileptic patients.


Assuntos
Anticonvulsivantes/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Músculo Masseter/efeitos dos fármacos , Músculo Masseter/fisiopatologia , Nerium , Extratos Vegetais/toxicidade , Animais , Eletroencefalografia , Eletromiografia , Masculino , Intoxicação por Plantas/fisiopatologia , Ratos Wistar , Convulsões/prevenção & controle
9.
Ecotoxicol Environ Saf ; 191: 110159, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31962214

RESUMO

Mercury chloride (HgCl2) is a chemical pollutant widely found in the environment. This form of mercury is able to promote several damages to the Central Nervous System (CNS), however the effects of HgCl2 on the spinal cord, an important pathway for the communication between the CNS and the periphery, are still poorly understood. The aim of this work was to investigate the effects of HgCl2 exposure on spinal cord of adult rats. For this, animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. Then, they were euthanized, the spinal cord collected and we investigated the mercury concentrations in medullary parenchyma and the effects on oxidative biochemistry, proteomic profile and tissue structures. Our results showed that exposure to this metal promoted increased levels of Hg in the spinal cord, impaired oxidative biochemistry by triggering oxidative stress, mudulated antioxidant system proteins, energy metabolism and myelin structure; as well as caused disruption in the myelin sheath and reduction in neuronal density. Despite the low dose, we conclude that prolonged exposure to HgCl2 triggers biochemical changes and modulates the expression of several proteins, resulting in damage to the myelin sheath and reduced neuronal density in the spinal cord.


Assuntos
Poluentes Ambientais/toxicidade , Cloreto de Mercúrio/toxicidade , Neurônios Motores/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Proteoma/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Bainha de Mielina/ultraestrutura , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura
10.
Front Neurosci ; 13: 1428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038136

RESUMO

The present study investigated the visual perimetry and color vision of two Amazonian populations differently exposed to mercury. Ten riverines environmentally exposed to mercury by fish eating and 34 gold-miners occupationally exposed to mercury vapor. The visual perimetry was estimated using the Förster perimeter and the color vision was evaluated using a computerized version of Farnsworth-Munsell test. Riverine and gold-miners' hair mercury concentrations were quantified. Mercury hair concentration of the riverines was significantly higher than that from gold-miners. Riverines had lower perimetric area than the gold-miners. The errors in the hue ordering test of both Amazonian populations were larger than the controls (non-exposed subjects), but there was no difference between themselves. Riverines had significant multiple association between the visual function and hair mercury concentration, while the gold-miners has no significant association with the exposure. We concluded that the different ways of mercury exposure led to similar visual outcomes, with greater impairment in riverines (organic mercury exposed subjects).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA