Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Technol ; : 1-13, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052955

RESUMO

Microalgal Technologies have recently been employed as an alternative treatment for high nitrogen content wastewater. Nitrogen is an essential nutrient for microalgae growth, and its presence in wastewater may be an alternative source to synthetic medium, contributing to a circular economy. This study aimed to investigate the effect of using Parachlorella kessleri cultivated in wastewater from the thermal processing of chicken meat. Experiments were performed to obtain the ideal sampling site, inoculum dosage, and contact time. P. kessleri had better growth in the sample from the settling basin. Nitrogen removal was 95% (0,15 mg TNK/107 cells) in 9 days, and the final nitrogen concentration was lower than 20 mg/L, and the nitrate concentration was lower than 1 mg/L. However, during the third cycle in the kinetic assay, there was a decline in the microalgae growth, occasioned by the accumulation of nitrite (38,4 mg/L) in the inside of the cell. The study demonstrated that nitrogen concentration is directly related to the cell growth of the algae. Parachlorella kessleri efficiently removed nitrogen from chicken meat thermal processing wastewater and is a potential option for tertiary treatment and valorisation of such effluent as a nitrogen source.

2.
Environ Technol ; : 1-11, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286140

RESUMO

The combination of sewage anaerobic treatment and partial nitritation/anammox process (PN/A) can make wastewater treatment plants energetically self-sufficient. However, PN/A application has been a challenge in low-nitrogen wastewaters and it is little explored in anaerobically pretreated domestic sewage, as well as aeration strategies and the PN/A feasibility at ambient temperature. This study investigated PN/A in a sequential batch reactor (SBR) treating real anaerobically pretreated domestic sewage. After the startup, SBR was fed with real wastewater and operated at 35°C and at ambient temperature (20-31°C) without total nitrogen (TN) removal decrease (71 ± 8 and 75 ± 6%, respectively). The median ammonium and TN removals were 68 ± 21 and 59 ± 9%, respectively with 7 min on/14 min off strategy, which represents 12.3 ± 4.2 mg L-1 N-NH4+ effluent, which is lower than Brazilian discharge limits. The qPCR results showed anammox abundance in the range of 108-109 n° copies gVSS-1. Thus, results were very promising and showed the feasibility of the PN/A process for treating real anaerobically pretreated domestic sewage at ambient temperature.

3.
Sci Total Environ ; 912: 169349, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104803

RESUMO

Anammox bacteria are widely applied worldwide for denitrification of urban wastewater. Differently, their application in the case of industrial effluents has been more limited. Those frequently present high loads of contaminants, demanding an individual evaluation of their treatability by anammox technologies. Bioreactors setting up and recovery after contaminants-derived perturbations are slow. Also, toxicity is frequently not acute but cumulative, which causes negative macroscopic effects to appear only after medium or long-term operations. All these particularities lead to relevant economic and time losses. We hypothesized that contaminants cause changes at anammox proteome level before perturbations in the engineered systems are detectable by macroscopic analyses. In this study, we explored the usefulness of short-batch tests combined with environmental proteomics for the early detection of those changes. Copper was used as a model of stressor contaminant, and anammox granules were exposed to increasing copper concentrations including previously reported IC50 values. The proteomic results revealed that specific anammox proteins involved in stress response (bacterioferritin, universal stress protein, or superoxide dismutase) were overexpressed in as short a time as 28 h at the higher copper concentrations. Consequently, EPS production was also increased, as indicated by the alginate export family protein, polysaccharide biosynthesis protein, and sulfotransferase increased expression. The described workflow can be applied to detect early-stage stress biomarkers of the negative effect of other metals, organics, or even changes in physical-chemical parameters such as pH or temperature on anammox-engineered systems. On an industrial level, it can be of great value for decision-making, especially before dealing with new effluents on facilities, deriving important economic and time savings.


Assuntos
Oxidação Anaeróbia da Amônia , Cobre , Proteômica , Oxirredução , Nitrogênio , Reatores Biológicos/microbiologia , Desnitrificação , Esgotos/microbiologia
4.
Braz J Microbiol ; 54(4): 3033-3039, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723328

RESUMO

Microorganisms play a vital role in biological wastewater treatment by converting organic and toxic materials into harmless substances. Understanding microbial communities' structure, taxonomy, phylogeny, and metabolic activities is essential to improve these processes. Molecular microbial ecology employs molecular techniques to study community profiles and phylogenetic information since culture-dependent approaches have limitations in providing a comprehensive understanding of microbial diversity in a system. Genomic advancements such as DNA hybridization, microarray analysis, sequencing, and reverse sample genome probing have enabled the detailed characterization of microbial communities in wastewater treatment facilities. This mini-review summarizes the current state of knowledge on the diversity of microorganisms in wastewater treatment plants, emphasizing critical microbial processes such as nitrogen and phosphorus removal.


Assuntos
Microbiota , Águas Residuárias , Filogenia , Genômica , Nitrogênio/metabolismo , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Esgotos/microbiologia
5.
Environ Sci Pollut Res Int ; 30(39): 91060-91073, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464210

RESUMO

The objective of this research was to evaluate the performance of a structured bed reactor (SBRIA), carried out with intermittent aeration (IA), in the removal of organic matter and nitrogen from dairy effluent, when run with different organic loading rates (OLR). The SBRIA was operated for 227 days, with 2:1 AI cycles (2 h with aeration on and 1 h off) and Hydraulic Retention Time (HRT) of 16 h. Three phases, with different OLR, were evaluated: phases A (1000 gCOD m-3 day-1 - 63 days), B (1400 gCOD m-3 day-1 - 94 days), and C (1800 gCOD m-3 day-1 - 70 days). The percentage of COD, NH4+-N removal, and nitrogen removal, respectively, were above 85 ± 7%, 73 ± 27%, and 83 ± 5, in all phases. There was no accumulation of the oxidized forms of nitrogen in the reactor. The kinetic test, performed to evaluate the nitrification and denitrification in the system, indicated that even in dissolved oxygen concentrations of 4.5 mg L-1, it was possible to obtain the denitrification process in the system. The results demonstrate that the reactor under study has positive characteristics to be used as an alternative for removing the removal of organic material and nitrogen in the biological treatment of dairy effluents.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos , Nitrificação , Eliminação de Resíduos Líquidos/métodos
6.
Environ Technol ; 44(3): 304-315, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34429035

RESUMO

Expanded vermiculite was used as an adsorbent to remove ammonia nitrogen from landfill leachate. Bench and pilot-scale adsorption experiments were performed with leachate collected from a closed sanitary landfill located in Curitiba, southern Brazil. At the bench-scale, two different heights of vermiculite and three different flow rates were tested using a fixed-bed column. These tests produced an average uptake capacity of 33.4 mg g-1 for the ammonia nitrogen concentration of 2,560 mg L-1. The Yan model was used to determine the breakthrough and the exhaustion times due to the best fit of the data to this model. At the pilot-scale, the flow rate was determined from the shortest length of the mass transfer zone obtained from bench-scale experiments. Tests were performed using one stainless-steel column filled with 26.2 kg of expanded vermiculite, which resulted in a bed height of 1.6 m. A leachate flow rate of approximately 350 L d-1 was applied to achieve the required contact time of 8.3 h. At this scale, an average uptake capacity of 18.1 mg g-1 was obtained for the ammonia nitrogen concentration of 1,193 mg L-1. It is worth mentioning that the flow rate and the concentration of the adsorbate in the feeding solution are fundamental to improve the operational time of the fixed-bed column. The main goal of this research was the determination of operating conditions to scale-up the adsorption process of ammonia nitrogen onto expanded vermiculite. The contact time was a key parameter to reach this goal.


Assuntos
Amônia , Poluentes Químicos da Água , Adsorção , Silicatos de Alumínio , Poluentes Químicos da Água/análise , Nitrogênio/análise
7.
Chemosphere ; 313: 137364, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427582

RESUMO

Due to dissolved oxygen (DO) limited nitrogen removal efficiency in constructed wetlands (CWs), two representative oxygen-suppling CWs, i.e., tidal flow constructed wetlands (TFCWs) and intermittently aerated constructed wetlands (IACWs) were proposed to compare the effect of oxygen supply strategies on the nitrogen removal performance and mechanism. Results showed that the removal efficiencies of NH4+-N and COD in IACWs were as high as 90.35-97.14% and 91.14-92.44%, respectively. In terms of TN, TFCWs (83.82%) showed a significantly higher removal efficiency than IACWs, and this result was derived with the flooded/drained phase (FP/DP) ratio of 21 h:3 h in TFCWs, because rhythmic FP and DP formed a high oxygen gradient at different depths of the system, which intensified the nitrification and denitrification simultaneously. The potential nitrifying and denitrifying bacteria (e.g., Nitrospira, Azospira, Haliangium, Bradyrhizobium and Arenimonas) were enriched more significantly in TFCWs compared with IACWs, as well as Bacillus for simultaneous nitrification and denitrification, which promoted nitrogen transformation together. Also, the results of molecular ecological network analysis showed that bacterial community structure in IACWs was more complex and robust than in TFCWs, because there were obviously more nodes and links as well as a higher proportion of negative interference. However, the relationship between genera in TFCWs was closer depending on shorter path distances, and the keystone genus (Nitrosomonas) in related to nitrification was considered to play an important role in nitrogen transformation performance.


Assuntos
Desnitrificação , Águas Residuárias , Áreas Alagadas , Nitrogênio/análise , Nitrificação , Bactérias , Oxigênio , Eliminação de Resíduos Líquidos
8.
Water Environ Res ; 94(9): e10780, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36058650

RESUMO

The anaerobic ammonium oxidation (anammox) process has attracted significant attention as an economic, robustness, and sustainable method for the treatment of nitrogen (N)-rich wastewater. Anammox bacteria (AnAOB) coexist with other microorganisms, and particularly with ammonia-oxidizing bacteria (AOB) and/or heterotrophic bacteria (HB), in symbiosis in favor of the substrate requirement (ammonium and nitrite) of the AnAOB being supplied by these other organisms. The dynamics of these microbial communities have a significant effect on the N-removal performance, but the corresponding metabolic pathways are still not fully understood. These processes involve many common metabolites that may act as key factors to control the symbiotic interactions between these organisms, to maximize N-removal efficiency from wastewater. Therefore, this work overviews the current state of knowledge about the metabolism of these microorganisms including key enzymes and intermediate metabolites and summarizes already reported experiences based on the employment of certain metabolites for the improvement of N-removal using anammox-based processes. PRACTITIONER POINTS: Approaches knowledge about the biochemistry and metabolic pathways involved in anammox-based processes. Some molecular tools can be used to determine enzymatic activity, serving as an optimization in nitrogen removal processes. Enzymatic evaluation allied to the physical-chemical and biomolecular analysis of the nitrogen removal processes expands the application in different effluents.


Assuntos
Compostos de Amônio , Águas Residuárias , Compostos de Amônio/metabolismo , Oxidação Anaeróbia da Amônia , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Oxirredução , Águas Residuárias/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-35206599

RESUMO

For many years, the world's coastal marine ecosystems have received industrial waste with high nitrogen concentrations, generating the eutrophication of these ecosystems. Different physicochemical-biological technologies have been developed to remove the nitrogen present in wastewater. However, conventional technologies have high operating costs and excessive production of brines or sludge which compromise the sustainability of the treatment. Microbial electrochemical technologies (METs) have begun to gain attention due to their cost-efficiency in removing nitrogen and organic matter using the metabolic capacity of microorganisms. This article combines a critical review of the environmental problems associated with the discharge of the excess nitrogen and the biological processes involved in its biogeochemical cycle; with a comparative analysis of conventional treatment technologies and METs especially designed for nitrogen removal. Finally, current METs limitations and perspectives as a sustainable nitrogen treatment alternative and efficient microbial enrichment techniques are included.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos , Ecossistema , Nitrogênio/metabolismo , Águas Residuárias
10.
Environ Sci Pollut Res Int ; 29(19): 28565-28571, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34988790

RESUMO

Phycoremediation of swine wastewater is a promising treatment since it efficiently removes nutrients and contaminants and, simultaneously, its biomass can be harvested and used to obtain a wide range of valuable compounds and metabolites. In this context, biomass microalgae were investigated for the phycoremediation of swine wastewater, and biomass extracts for its virucidal effect against enveloped and non-enveloped viruses. Microalgae were cultivated in a pilot scale bioreactor fed with swine wastewater as the growth substrate. Hexane, dichloromethane, and methanol were used to obtain the microalgae extracts. Extracts were tested for virucidal potential against HSV-1 and HAdV-5. Virucidal assays were conducted at temperatures that emulate environmental conditions (21 °C) and body temperature (37 °C). The maximum production of microalgae biomass reached a concentration of 318.5 ± 23.6 mgDW L-1. The results showed that phycoremediation removed 100% of ammonia-N and phosphate-P, with rates (k1) of 0.218 ± 0.013 and 0.501 ± 0.038 (day-1), respectively. All microalgae extract reduced 100% of the infectious capacity of HSV-1. The microalgae extracts with dichloromethane and methanol showed inhibition activities at the lowest concentration (3.125 µg mL-1). Virucidal assays against HAdV-5 using microalgae extract of hexane and methanol inhibited the infectious capacity of the virus by 70% at all concentrations tested at 37 °C. At a concentration of 12.5 µg mL-1, the dichloromethane microalgae extract reduced 50-80% of the infectious capacity of HAdV-5, also at 37 °C. Overall, the results suggest that the microalgae can be an attractive source of feedstock biomass for the exploration of alternative virucidal compounds.


Assuntos
Chlorella , Microalgas , Animais , Biomassa , Hexanos , Metanol/metabolismo , Cloreto de Metileno , Microalgas/metabolismo , Nitrogênio/análise , Extratos Vegetais/metabolismo , Suínos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA