Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Chemosphere ; 357: 142074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657693

RESUMO

The objective of this study was to assess the photolysis-mediated degradation of malathion in standard and commercial formulations, and to determine the toxicity of these degraded formulations. Degradation tests were carried out with 500 µg L-1 of malathion and repeated three times. The initial and residual toxicity was assessed by using Lactuca sativa seeds for phytotoxicity, Stegomyia aegypti larvae for acute toxicity, and Stegomyia aegypti mosquitoes (cultivated from the larval stage until emergence as mosquitoes) to evaluate the biochemical markers of sublethal concentrations. For the standard formulations the photolytic process efficiently reduced the initial concentration of malathion to levels below the regulatory limits however, the formation of byproducts was revealed by chromatography, which allowed for a more complete proposal of photolytic-mediated malathion degradation route. The degraded formulations inhibited the growth of L. sativa seeds, while only the untreated formulations showed larvicidal activity and mortality. Both formulations slightly inhibited acetylcholinesterase activity in S. aegypti mosquitoes, while the standard formulation decreased and the commercial formulation increased glutathione S-transferase activity. However, there were no significant differences for superoxide dismutase, esterase-α, esterase-ß and lipid peroxidation. These findings indicate that in the absence of the target compound, the presence of byproducts can alter the enzymatic activity. In general, photolysis effectively degrade malathion lower than the legislation values; however, longer treatment times must be evaluated for the commercial formulation.


Assuntos
Inseticidas , Larva , Malation , Fotólise , Malation/química , Malation/toxicidade , Animais , Inseticidas/química , Inseticidas/toxicidade , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Aedes/efeitos dos fármacos , Aedes/crescimento & desenvolvimento , Acetilcolinesterase/metabolismo , Ecotoxicologia , Biomarcadores/metabolismo , Lactuca/efeitos dos fármacos , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Superóxido Dismutase/metabolismo
2.
Waste Manag Res ; : 734242X231190813, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37638685

RESUMO

Organophosphate esters (OPEs) used as flame retardants and plasticizers are additives in building and construction materials, decorations, furniture, electronic equipment, among other applications. The presence of materials containing these substances in construction and demolition waste (CDW) from weak waste management practices can result in environmental contamination. In this study, OPEs' presence in soil samples collected from a CDW landfill in Brazil was evaluated. Soil samples were collected in areas adjacent to CDW from an inert landfill, and the samples were analysed by gas chromatography coupled to mass spectrometry. The OPEs were detected in all soil samples at quantifiable concentrations ranging from 21 to 251 ng g-1, and detected compounds were tris(phenyl) phosphate, tris(2-butoxyethyl) phosphate, tris(1,3-dichloroisopropyl) phosphate, tris(2-chloroisopropyl) phosphate and 2-ethylhexyl diphenyl phosphate. The presence of these compounds in a CDW landfill is probably due to the lack of control of the materials sent to and deposited in the landfill, which, results in part from the lack of sampling and screening systems that can help identify the presence of contaminants in the CDW waste stream. This is partially due to OPEs not being considered controlled compounds under current regulations, thus screening or separation for handling of OPEs at construction and demolition work sites is rare to non-existent. The data generated in this study reveals the need for improving CDW management to minimize, if not eliminate, environmental contamination by OPEs.

3.
Chem Biol Interact ; 383: 110678, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37595776

RESUMO

Nerve agents (NA) pose as a great risk in the modern world. NA from the V-series, such as VX, are currently recognized as the most toxic among those compounds. However, the emergence of new classes of toxicants recently included in the Chemical Weapons Convention (CWC), such as the A-series NA, a class of organophosphorus compounds related to phosphoramidates, pose a new source of concern due to the lack of information. In order advance in the investigation on the toxicity of such toxic chemicals, we performed in vitro studies to compare representatives of the V- and A-series using affordable surrogates. Results suggest a similar inhibition potency between both agents.


Assuntos
Acetilcolinesterase , Agentes Neurotóxicos , Agentes Neurotóxicos/toxicidade , Substâncias Perigosas , Compostos Organofosforados/toxicidade
4.
Chem Biol Interact ; 382: 110637, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37468116

RESUMO

This study shows the EDTA-resistant, Ca2+ and Cu2+-dependent hydrolysis of O-hexyl 2,5-dichlorophenyl phosphoramidate (HDCP) compound in reptiles sera determined by spectrophotometry UV/Vis and chiral chromatography. Samples of ten reptile species were incubated with aliquot of 100 or 400 µM HDCP in presence of 100 or 300 µM Cu2+, or 2.5 mM Ca2+ or 5 mM EDTA at 37 °C for 30-60 min. The results shown an activator effect of Cu2+ on HDCP hydrolysis in freshwater turtles sera (Trachemys scripta, Chelydra serpentina and Macrochelys temminckii) because the levels of 2,5-dichlorophenol (DCP; product hydrolysis) were similar (∼37 µM DCP) to chicken serum (positive control group). The marine turtles (Chelonia mydas and Eretmochelys imbricata) and crocodiles (Crocodylusacutus and Crocodylus moreletii) showed ∼50% less HDCPase activity (13-17 µM DCP) compared to the HDCPase activity of the freshwater turtle species. Terrestrial reptile species (snakes and lizards) showed around 25% of activity (7-13 µM DCP) with both copper concentrations. These Cu2+-dependent hydrolysis were stereospecific to R(+)-HDCP (p˂0.05) in the three freshwater turtle species that showed similar hydrolysis to the chicken serum. However, the Ca2+ did not show a significant activating effect on the HDCPase activity (1-8 µM DCP) in any reptile serum. Their hydrolysis levels were very similar to those of EDTA-resistant activity. The present study demonstrates a Cu2+-dependent A-esterase (HDCPase) activity in turtles and points serum albumin as the cuproprotein responsible for this activity, reinforcing its N-terminal sequence (DAEH) as a catalytic center.


Assuntos
Cobre , Compostos Organofosforados , Animais , Hidrólise , Compostos Organofosforados/química , Ácido Edético , Galinhas , Répteis
5.
Chemosphere ; 334: 138974, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37207896

RESUMO

Organophosphate esters (OPEs) are substances that have been detected in several matrices due to their use as flame retardants and plasticizers. Human exposure to OPEs can cause endocrine disruption, neurotoxicity, and reproductive disturbance. Ingestion of contaminated food can be a significant route of exposure to OPEs. Food can be contaminated by OPEs in the food chain, during cultivation, and by contact with plasticizers during the production chain of processed foods. In this study, a method for the determination of 10 OPEs in commercial bovine milk was developed. The procedure was based on QuEChERS extraction and gas chromatography coupled to mass spectrometry (GC-MS) analysis. QuEChERS modification included a freezing-out step after the extraction followed by the concentration of the entire acetonitrile phase before the clean-up step. Calibration linearity, matrix effects, recovery, and precision were evaluated. Significant matrix effects were observed, which were compensated by matrix-matched calibration curves. Recoveries ranged from 75 to 105%, with a relative standard deviation ranging from 3 to 38%. The method detection limits (MDLs) were in the range of 0.43-4.5 ng mL-1, while the method quantification limits (MQLs) were within the range from 0.98 to 15 ng mL-1. The proposed method was successfully validated and applied to determine the concentrations of OPEs in bovine milk. The 2-ethylhexyl diphenyl phosphate (EHDPHP) was detected in the analyzed milk samples but at levels below the MQL.


Assuntos
Retardadores de Chama , Leite , Humanos , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Leite/química , Espectrometria de Massas em Tandem/métodos , Plastificantes/análise , Organofosfatos/análise , Retardadores de Chama/análise , Ésteres/análise
6.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982434

RESUMO

Organophosphate pesticides (OPs) have greatly facilitated food production worldwide, and their use is not limited to agriculture and the control of pests and disease vectors. However, these substances can directly affect the immune response of non-target organisms. In this sense, exposure to OPs can have negative effects on innate and adaptive immunity, promoting deregulation in humoral and cellular processes such as phagocytosis, cytokine expression, antibody production, cell proliferation, and differentiation, which are crucial mechanisms for host defense against external agents. This review focuses on the scientific evidence of exposure to OPs and their toxic effects on the immune system of non-target organisms (invertebrates and vertebrates) from a descriptive perspective of the immuno-toxic mechanisms associated with susceptibility to the development of bacterial, viral, and fungal infectious diseases. During the exhaustive review, we found that there is an important gap in the study of non-target organisms, examples of which are echinoderms and chondrichthyans. It is therefore important to increase the number of studies on other species directly or indirectly affected by Ops, to assess the degree of impact at the individual level and how this affects higher levels, such as populations and ecosystems.


Assuntos
Inseticidas , Praguicidas , Animais , Ecossistema , Invertebrados , Vertebrados , Compostos Organofosforados , Imunidade , Organofosfatos , Praguicidas/toxicidade
7.
Chemphyschem ; 24(6): e202200612, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36326485

RESUMO

The high toxicity of organophosphates, along with its wide use as agrochemicals and chemical warfare, urges efficient degradation methods. Alkaline hydrolysis stands out, which is strongly structure-dependent. The alkaline hydrolysis of various organophosphates is described using a bilinear variation of the Brønsted equation, which evaluates concomitantly the effect of the leaving and non-leaving groups. Over 50 reactions were successfully correlated linearly and the contribution of the usually underestimated non-leaving group seems to be as important as the leaving group. The hetero atom effect (P=O and P=S) seems to vary the contribution of these groups. This concise understanding of the structure-reactivity relationship allows to predict optimal neutralization processes and is key for chemical security, saving time, resources and avoiding unnecessary manipulation of toxic chemicals.

8.
Curr Med Chem ; 30(36): 4149-4166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36239718

RESUMO

Organophosphorus compounds (OP) make up an important class of inhibitors, mostly employed as pesticides, even as chemical weapons. These toxic substances act through the inhibition of the acetylcholinesterase (AChE) enzyme, which results in elevated synaptic acetylcholine (ACh) levels, leading to serious adverse effects under the cholinergic syndrome. Many reactivators have been developed to combat the toxic effects of these AChE inhibitors. In this line, the oximes highlight because of their good reactivating power of cholinesterase enzymes. To date, no universal antidotes can reactivate AChE inhibited by any OP agent. This review summarizes the intoxication process by neurotoxic OP agents, along with the development of reactivators capable of reversing their effects, approaching aspects like the therapeutic and toxicological profile of these antidotes. Computational methods and conscious in vitro studies, capable of significantly predicting the toxicological profile of these drug candidates, might support the process of development of these reactivators before entering in vivo studies in animals, and then clinical trials. These approaches can assist in the design of safer and more effective molecules, reducing related cost and time for the process.


Assuntos
Antídotos , Reativadores da Colinesterase , Animais , Antídotos/farmacologia , Antídotos/uso terapêutico , Antídotos/química , Acetilcolinesterase/química , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/toxicidade , Compostos Organofosforados , Oximas/uso terapêutico , Oximas/toxicidade , Inibidores da Colinesterase/toxicidade
9.
Environ Sci Pollut Res Int ; 30(4): 10803-10811, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36085219

RESUMO

Organophosphorus pesticides bring significant improvements in agriculture, but their toxicity causes environmental and health negative impacts. The aim of this work was the development of robust biocatalysts to be applied in bioremediation. Four fungi were evaluated as hydrolase sources capable of degrading organophosphorus pesticides: Aspergillus niger, Fusarium sp., Penicillium chrysogenum, and Penicillium nalgiovense. The hydrolysis rates of methyl paraoxon obtained under acidic conditions were in the range of 10 to 21 mg L-1 d-1, which is remarkable since most similar biocatalysts are active under alkaline conditions. Penicillium chrysogenum activity was outstanding, and it was selected to prepare, characterize, and study the applications of its enzymatic extract. It was used to evaluate the bioremediation of apple surfaces at pH 2 in the presence of SDS, achieving complete methyl paraoxon degradation under proposed conditions. These results indicate that this biocatalyst could complement industrialized fruit washing processes for the elimination of organophosphorus pesticides.


Assuntos
Malus , Praguicidas , Praguicidas/química , Arildialquilfosfatase , Malus/metabolismo , Compostos Organofosforados/química , Descontaminação , Hidrolases/química
10.
Toxicol Rep ; 10: 32-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36578673

RESUMO

Diazinon (DZN) is an insecticide extensively used to control pests in crops and animals. However, its indicriminated use may lead to liver damage in animals and humans. This study aimed to evaluate the toxicity of DZN (25-150 µM) on human hepatoblastoma (HepG2) cells after 24 and 48 h of exposure and the role of its biotransformation on the toxicological potential. We also tested the protective effect of tetrahydrocurcumin (THC), an antioxidant agent, in the DZN-induced citotoxicity. DZN caused cytotoxicity in the HepG2 cells, inhibiting cell proliferation and reducing cell viability in a dose- and time-dependent manner. The pre-incubation of HepG2 cells with chemical inducers of cytochrome P450 monooxygenase 3-methylcholanthrene and phenobarbital resulted in a further decrease of cell viability associated with DZN exposure. In addition, the metabolite diazoxon was more toxic than DZN. Our results also revealed that THC alleviated DZN-induced cytotoxicity and reactive oxygen and nitrogen species (RONS) generation in HepG2 cells. In conclusion, our data provide novel insights into the involvement of biotransformation in the mechanisms of DZN-induced cytotoxicity and suggest that amelioration of RONS accumulation might be involved in the protective effect of THC on DZN-induced liver injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA