Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 258: 119477, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38909943

RESUMO

In this study, UiO-67 (Zr)/g-C3N4 composites (U67N) were synthesized at wt.% ratios of 05:95, 15:85, and 30:70 using the solvothermal method at 80 °C for 24 h followed by calcination at 350 °C. The composites were characterized using UV-Vis diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray spectroscopy, transmission electron microscopy, and nitrogen physisorption analysis. In addition, thermal stability analysis of UiO-67 was conducted using thermogravimetric analysis. The photocatalytic performance of the composites was assessed during the degradation and mineralization of a mixture of methylparaben (MeP) and propylparaben (PrP) under simulated sunlight. The adsorption process of U67N 15:85 was characterized through kinetic studies and adsorption capacity experiments, which were modeled using pseudo-first-order and pseudo-second-order kinetics and Langmuir and Freundlich isotherms, respectively. The influence of pH levels 3, 5, and 7 on the photocatalytic degradation of the mixture was investigated, revealing enhanced degradation and mineralization at pH 3. The U67N composite exhibited dual capability in removing contaminants through adsorption and photocatalytic processes. Among the prepared composites, U67N 15:85 demonstrated the highest photocatalytic activity, achieving removal efficiencies of 96.8% for MeP, 92.5% for PrP, and 45.7% for total organic carbon in 300 kJ/m2 accumulated energy (3 h of reaction time). The detoxification of the effluent was confirmed through acute toxicity evaluation using the Vibrio fischeri method. The oxidation mechanism of the heterojunction formed between UiO-67 (Zr) and g-C3N4 was proposed based on PL analysis, photoelectrochemistry studies (including photocurrent response, Nyquist, and Mott-Schottky analyses), and scavenger assays.


Assuntos
Parabenos , Poluentes Químicos da Água , Parabenos/química , Adsorção , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Catálise , Cinética
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834027

RESUMO

This study employs electrochemical and Density Functional Theory (DFT) calculation approaches to investigate the potential of a novel analogue of trimetozine (TMZ) antioxidant profile. The correlation between oxidative stress and psychological disorders indicates that antioxidants may be an effective alternative treatment option. Butylatedhydroxytoluene (BHT) is a synthetic antioxidant widely used in industry. The BHT-TMZ compound derived from molecular hybridization, known as LQFM289, has shown promising results in early trials, and this study aims to elucidate its electrochemical properties to further support its potential as a therapeutic agent. The electrochemical behavior of LQFM289 was investigated using voltammetry and a mechanism for the redox process was proposed based on the compound's behavior. LQFM289 exhibits two distinct oxidation peaks: the first peak, Ep1a ≈ 0.49, corresponds to the oxidation of the phenolic fraction (BHT), and the second peak, Ep2a ≈ 1.2 V (vs. Ag/AgCl/KClsat), denotes the oxidation of the amino group from morpholine. Electroanalysis was used to identify the redox potentials of the compound, providing insight into its reactivity and stability in different environments. A redox mechanism was proposed based on the resulting peak potentials. The DFT calculation elucidates the electronic structure of LQFM289, resembling the precursors of molecular hybridization (BHT and TMZ), which may also dictate the pharmacophoric performance.


Assuntos
Antioxidantes , Morfolinas , Antioxidantes/química , Oxirredução , Ansiedade
3.
FEBS J ; 289(18): 5480-5504, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35490402

RESUMO

Protein phosphorylation is a major post-translational modification involved in cell signalling that regulates many physiological and pathological processes. Despite their biological importance, protein phosphatases are less studied than protein kinases. Importantly, the activity of Cys-based protein tyrosine phosphatases (PTPs) can be regulated by reversible oxidation. The initial two-electron oxidation product of the active site Cys is a sulfenic acid (Cys-SOH) that can then undergo distinct outcomes, such as the disulfide bond or a sulfenyl amide formation. Here, we review the biochemical and structural features of PTPs to find patterns that might specify their oxidation products, aiming to get insights into redox regulatory mechanisms. Initially, the structure and biochemistry of PTP1B is presented. Then, we describe structural aspects that are relevant for substrate recognition and catalysis. Notably, all PTPs contain critical Cys residues for the catalysis of dephosphorylation that is prone to oxidative inactivation, which are frequently found oxidized in cells under physiological conditions, such as upon growth factor stimuli. However, direct oxidations of Cys residues in PTPs by H2 O2 are rather slow. Therefore, we discuss possible mechanisms that may account for this apparent contradiction between biological and chemical redox aspects of PTPs. Furthermore, we performed a systematic analysis of the distance between active site cysteine and its backdoor cysteine with the attempt to analyse the preference between disulfide bond formation or sulfenyl amide interaction upon oxidation. In summary, PTPs have been showing many possibilities to auto-protect from irreversible oxidation, which is important for cell signalling regulation.


Assuntos
Cisteína , Ácidos Sulfênicos , Amidas/química , Cisteína/química , Dissulfetos/metabolismo , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo
4.
Pharmaceuticals (Basel) ; 12(3)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374819

RESUMO

This work details the study of the redox behavior of the drugs cyclobenzaprine (CBP), amitriptyline (AMP) and nortriptyline (NOR) through voltammetric methods and computational chemistry. Results obtained in this study show that the amine moiety of each compound is more likely to undergo oxidation at 1a at Ep1a ≈ 0.69, 0.79, 0.93 V (vs. Ag/AgCl/KClsat) for CBP, AMP and NOR, respectively. Moreover, CBP presented a second peak, 2a at Ep2a ≈ 0.98 V (vs. Ag/AgCl/KClsat) at pH 7.0. Furthermore, the electronic structure calculation results corroborate the electrochemical assays regarding the HOMO energies of the lowest energy conformers of each molecule. The mechanism for each anodic process is proposed according to electroanalytical and computational chemistry findings, which show evidence that the methods herein employed may be a valuable alternative to study the redox behavior of structurally similar drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA