Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37627729

RESUMO

Salmonella Isangi is an infrequent serovar that has recently been reported in several countries due to nosocomial infections. A considerable number of reports indicate Salmonella Isangi multidrug resistance, especially to cephalosporins, which could potentially pose a risk to public health worldwide. Genomic analysis is an excellent tool for monitoring the emergence of microorganisms and related factors. In this context, the aim of this study was to carry out a genomic analysis of Salmonella Isangi isolated from poultry in Brazil, and to compare it with the available genomes from the Pathogen Detection database and Sequence Read Archive. A total of 142 genomes isolated from 11 different countries were investigated. A broad distribution of extended-spectrum beta-lactamase (ESBL) genes was identified in the Salmonella Isangi genomes examined (blaCTX-M-15, blaCTX-M-2, blaDHA-1, blaNDM-1, blaOXA-10, blaOXA-1, blaOXA-48, blaSCO-1, blaSHV-5, blaTEM-131, blaTEM-1B), primarily in South Africa. Resistome analysis revealed predicted resistance to aminoglycoside, sulfonamide, macrolide, tetracycline, trimethoprim, phenicol, chloramphenicol, and quaternary ammonium. Additionally, PMQR (plasmid-mediated quinolone resistance) genes qnr19, qnrB1, and qnrS1 were identified, along with point mutations in the genes gyrAD87N, gyrAS83F, and gyrBS464F, which confer resistance to ciprofloxacin and nalidixic acid. With regard to plasmids, we identified 17 different incompatibility groups, including IncC, Col(pHAD28), IncHI2, IncHI2A, IncM2, ColpVC, Col(Ye4449), Col156, IncR, IncI1(Alpha), IncFIB (pTU3), Col(B5512), IncQ1, IncL, IncN, IncFIB(pHCM2), and IncFIB (pN55391). Phylogenetic analysis revealed five clusters grouped by sequence type and antimicrobial gene distribution. The study highlights the need for monitoring rare serovars that may become emergent due to multidrug resistance.

2.
Braz J Microbiol ; 54(3): 1769-1781, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37599326

RESUMO

Quinolones are one of the most widely used drugs in medicine. Resistance to this agent has been increased significantly among the nosocomial isolates. The objective of this research was to study generalized transduction, as a potential mechanism for plasmid-mediated quinolone resistance (PMQR) genes acquisition among hospital effluent isolates. Discharge samples from hospital effluent were taken from four medical centers in Azerbaijan. Resident phages were enriched against resident enterobacterial hosts using standard phage enrichment protocols. Polymerase chain reaction (PCR) was used to examine phage stocks and bacterial isolates for the presence of PMQR determinants. All positive bacterial isolates for target genes were subjected to transduction assays. Restriction fragment length polymorphism (RFLP) profiles were determined for cluster analysis. A total of 55 pure phage stocks were prepared from 42 effluents. A total of 95 non-duplicated Gram-negative bacteria were isolated. Thirty-two EcoRV-RFLP profiles were determined for the 40 Escherichia coli phage stocks. Twenty-six of 40 (65%) E. coli phages were positive for qnrB (n = 15), qnrD (n = 7), qnrA (n = 3), and qnrC (n = 2) genes. A total of 34 (35.7%) bacterial isolates were recognized to have any PMQR genes including qnrB (n = 23), qnrD (n = 8), qnrA (n = 5), and qnrC (n = 3) genes. Present research provided a strong evidence for potential role of generalized transduction in persistence and circulation of PMQR genes in health care settings of Azerbaijan.


Assuntos
Bacteriófagos , Quinolonas , Bacteriófagos/genética , Azerbaijão , Escherichia coli , Plasmídeos , Hospitais
3.
New Microbes New Infect ; 51: 101082, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36873288

RESUMO

The presence of crpP was established in 201 Pseudomonas aeruginosa isolates from 9 Peruvian hospitals. The 76.6% (154/201) of the isolates presented the crpP gene. Overall, 123/201 (61.2%) isolates were non-susceptible to ciprofloxacin. The prevalence of crpP-possessing P. aeruginosa in Peru is higher than in other geographical areas.

4.
Br Poult Sci ; 64(1): 137-141, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36129037

RESUMO

1. This study evaluated the minimal inhibitory concentration (MIC) of ciprofloxacin and the presence of plasmid-mediated quinolone resistance (PMQR) mechanisms in 97 nontyphoidal Salmonella spp. isolated from broilers and carcases from three different regions in Brazil. The presence of mutations in quinolone resistance determination regions (QRDRS) was investigated in the ciprofloxacin-resistant strain by DNA sequencing.2. Most of the Salmonella spp. (85.6%) had intermediate resistance to ciprofloxacin and only one isolate was resistant. MIC breakpoints ranged from ≤0.03 to 1 µg/ml and 67.0% of the strains had a MIC of 0.25 µg/ml (n=65). Thirteen strains (13.4%) were susceptible to ciprofloxacin with MIC ≤0.06 µg/ml. The qnrB gene was detected in eight isolates with intermediate resistance and in two susceptible strains. The other PMQR genes, qnrA, qnrC, qnrD, qnrS, qnrVC, aac(6')-Ib, qepA, oqxAB and mutations in QRDR were not detected in any strain.3. There was a high frequency of ciprofloxacin intermediate resistant Salmonella from broiler and broiler carcases from Brazil. The presence of these strains in poultry and derived products poses a risk to public health.


Assuntos
Ciprofloxacina , Quinolonas , Animais , Ciprofloxacina/farmacologia , Galinhas , Brasil , Proteínas de Bactérias/genética , Salmonella , Quinolonas/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética
5.
Antibiotics (Basel) ; 11(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358142

RESUMO

The disposal of antibiotics in the aquatic environment favors the selection of bacteria exhibiting antibiotic resistance mechanisms. Quinolones are bactericidal antimicrobials extensively used in both human and animal medicine. Some of the quinolone-resistance mechanisms are encoded by different bacterial genes, whereas others are the result of mutations in the enzymes on which those antibiotics act. The worldwide occurrence of quinolone resistance genes in aquatic environments has been widely reported, particularly in areas impacted by urban discharges. The most commonly reported quinolone resistance gene, qnr, encodes for the Qnr proteins that protect DNA gyrase and topoisomerase IV from quinolone activity. It is important to note that low-level resistance usually constitutes the first step in the development of high-level resistance, because bacteria carrying these genes have an adaptive advantage compared to the highly susceptible bacterial population in environments with low concentrations of this antimicrobial group. In addition, these genes can act additively with chromosomal mutations in the sequences of the target proteins of quinolones leading to high-level quinolone resistance. The occurrence of qnr genes in aquatic environments is most probably caused by the release of bacteria carrying these genes through anthropogenic pollution and maintained by the selective activity of antimicrobial residues discharged into these environments. This increase in the levels of quinolone resistance has consequences both in clinical settings and the wider aquatic environment, where there is an increased exposure risk to the general population, representing a significant threat to the efficacy of quinolone-based human and animal therapies. In this review the potential role of aquatic environments as reservoirs of the qnr genes, their activity in reducing the susceptibility to various quinolones, and the possible ways these genes contribute to the acquisition and spread of high-level resistance to quinolones will be discussed.

6.
Microorganisms ; 10(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456858

RESUMO

The increasing prevalence of multi-drug resistant (MDR) Escherichia coli in distinct ecological niches, comprising water sources and food-producing animals, such as fish species, has been widely reported. In the present study, quinolone-resistant E. coli isolates from Arapirama gigas, a major fish species in the Brazilian Amazon rivers and fish farms, were characterized regarding their antimicrobial susceptibility, virulence, and genetic diversity. A total of forty (40) specimens of A. gigas, including 20 farmed and 20 wild fish, were included. Thirty-four quinolone-resistant E. coli isolates were phenotypically tested by broth microdilution, while resistance and virulence genes were detected by PCR. Molecular epidemiology and genetic relatedness were analyzed by MLST and PFGE typing. The majority of isolates were classified as MDR and detected harboring blaCTX-M, qnrA and qnrB genes. Enterotoxigenic E. coli pathotype (ETEC) isolates were presented in low prevalence among farmed animals. MLST and PFGE genotyping revealed a wide genetic background, including the detection of internationally spread clones. The obtained data point out A. gigas as a reservoir in Brazilian Amazon aquatic ecosystems and warns of the interference of AMR strains in wildlife and environmental matrices.

7.
J Chemother ; 33(2): 122-127, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33357158

RESUMO

We investigated the phenotypic and molecular characteristics of Extended-Spectrum-ß-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates from four health-care institutions in Hermosillo, Sonora, Mexico. ESBL-producing isolates were collected from February to August 2016. The prevalence of ESBL-producing E. coli and K. pneumoniae was 11.9 and 8.7%, respectively. High dissemination of resistance to ciprofloxacin (88%), trimethoprim/sulfamethoxazole (72%) and aminoglycosides (59%) were detected, as well as susceptibility to meropenem, amikacin and tigecycline. The ESBL found variants were CTX-M-1 (88%) and CTX-M-9 (5%). The plasmid-mediated quinolone resistance (PMQR) gene aac(6´)-Ib-cr was identified in 62% of a representative sample, whereas the qnrB and qnrS genes were detected in 49% of the isolates. PFGE analyses detected many unrelated clones among the hospital or community isolates. A constant programme of epidemiological surveillance is recommended to understand the dynamics of bacterial resistance to both cephalosporin as well as the fluoroquinolone family of antibiotics.


Assuntos
Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/biossíntese , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/fisiologia , Escherichia coli/isolamento & purificação , Humanos , Klebsiella pneumoniae/isolamento & purificação , México , Testes de Sensibilidade Microbiana , Fenótipo
8.
Rev. argent. microbiol ; 52(4): 31-40, dic. 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1340918

RESUMO

Abstract Metallo-p-lactamases (MBL) producing Pseudomonas aeruginosa isolates have been well characterized. Quinolones are commonly used in the treatment of carbapenem-resistant P. aeruginosa infections; however, data about PMQR in this species are scarce. The objective of this study was to report the simultaneous presence of qnrS and blaV-M-n in P. aeruginosa, and to characterize the qnrS-harboring plasmid. Thirty-eight carbapenem-resistant P. aeruginosa isolates were recovered from a hospital in Buenos Aires during 2012. Screening forMBL was assessed by the double disk synergy test using EDTA and carbapenem discs. Plasmid DNA extraction was performed by a method using phenol-chloroform. PCR followed by sequencing was carried out to determine each MBL and PMQR allele. PCR-BseGI-RFLP was performed to detect aac-(6')-Ib-cr. The gyrA-QRDR was sequenced in those PMQR-harboring isolates. Plasmid incompatibility groups and addiction systems were characterized by PCR. The PMQR-carrying plasmid was sequenced using Illumina technology, annotated using RAST and manually curated. Eleven/38 isolates were VIM producers (blaVIM-2 and blaVIM-11) while 1/38 harbored blaIMP-13. One isolate harbored blaVIM-11 and the PMQR qnrSI; however, both markers were located in different plasmids. The qnrSí-harboring plasmid (pP6qnrS1) was 117 945 bp in size, presented 154 CDS and corresponded to the IncR group. In addition to qnrSI, it harbored several aminoglycoside resis-tance markers. Although pP6qnrS1 was non-conjugative, it presented an oriT which made it possible for this plasmid to be transferable. This is the first report on P. aeruginosa carrying both blaVIM-11 and qnrSI, plus the first detection of an IncR plasmid in Argentina.


Resumen Las quinolonas son comúnmente utilizadas en el tratamiento de las infecciones producidas por Pseudomonas aeruginosa resistentes a carbapenems (PARC); aun así, la información sobre la resistencia a quinolonas mediada por plásmidos (PMQR) en esta especie es escasa. El objetivo de este trabajo fue reportar la presencia simultánea de los genes qnrS y blaVIM-11 en PARC y caracterizar el plásmido portador de qnrS. Durante 2012 se recuperaron 38 PARC en un hospital de Buenos Aires. El tamizaje para detectar producción de metalo-beta-lactamasas (MBL) se llevó a cabo mediante sinergia de doble disco utilizando EDTA y carbapenems. El ADN plasmídico fue extraído utilizando fenolcloroformo. Para determinar los alelos de los genes implicados en la síntesis de MBL y de PMQR, se llevó a cabo PCR-secuenciación. Para la detección de aac-(6')-Ib-cr se realizó PCR-BseGI-RFLP. En aquellos aislamientos portadores de PMQR se secuenció el gen gyrA. Los grupos de incompatibilidad y sistemas de adicción fueron caracterizados por PCR. El plásmido portador de PMQR fue secuenciado completamente y curado manualmente. De 38 aislamientos, 11 fueron productores de VIM (blaVIM-2 y blaVIM-11), mientras que uno contenía blaIMP-13. Si bien un aislamiento fue portador de blaVIM-11 y de qnrSI, dichos marcadores se encontraban en distintos plásmidos. El plásmido portador de qnrSI (pP6qnrS1) presentó un tamaño de 117.945 pby 154 secuencias codificantes (CDS); este correspondió al grupo de incompatibilidad IncR. Además de qnrSI, el plásmido portaba diversos marcadores de resistencia a aminoglucósidos. Aun cuando pP6qnrS1 no resultó conjugativo, presentó un oriT, de modo que posiblemente sea transferible. Este es el primer informe acerca de PARC portadora de blaVIM-11 y de qnrSI en simultáneo, además, es la primera descripción de un plásmido IncR en Argentina.


Assuntos
Pseudomonas aeruginosa , beta-Lactamases , Plasmídeos/genética , Pseudomonas aeruginosa/genética , beta-Lactamases/genética , Testes de Sensibilidade Microbiana , Carbapenêmicos , Antibacterianos/farmacologia
9.
Rev Argent Microbiol ; 52(4): 298-304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31983491

RESUMO

Metallo-ß-lactamases (MBL) producing Pseudomonas aeruginosa isolates have been well characterized. Quinolones are commonly used in the treatment of carbapenem-resistant P. aeruginosa infections; however, data about PMQR in this species are scarce. The objective of this study was to report the simultaneous presence of qnrS and blaVIM-11 in P. aeruginosa, and to characterize the qnrS-harboring plasmid. Thirty-eight carbapenem-resistant P. aeruginosa isolates were recovered from a hospital in Buenos Aires during 2012. Screening for MBL was assessed by the double disk synergy test using EDTA and carbapenem discs. Plasmid DNA extraction was performed by a method using phenol-chloroform. PCR followed by sequencing was carried out to determine each MBL and PMQR allele. PCR-BseGI-RFLP was performed to detect aac-(6')-Ib-cr. The gyrA-QRDR was sequenced in those PMQR-harboring isolates. Plasmid incompatibility groups and addiction systems were characterized by PCR. The PMQR-carrying plasmid was sequenced using Illumina technology, annotated using RAST and manually curated. Eleven/38 isolates were VIM producers (blaVIM-2 and blaVIM-11) while 1/38 harbored blaIMP-13. One isolate harbored blaVIM-11 and the PMQR qnrS1; however, both markers were located in different plasmids. The qnrS1-harboring plasmid (pP6qnrS1) was 117945bp in size, presented 154 CDS and corresponded to the IncR group. In addition to qnrS1, it harbored several aminoglycoside resistance markers. Although pP6qnrS1 was non-conjugative, it presented an oriT which made it possible for this plasmid to be transferable. This is the first report on P. aeruginosa carrying both blaVIM-11 and qnrS1, plus the first detection of an IncR plasmid in Argentina.


Assuntos
Pseudomonas aeruginosa , beta-Lactamases , Antibacterianos/farmacologia , Carbapenêmicos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
10.
Clin Microbiol Rev ; 32(4)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31413045

RESUMO

While the description of resistance to quinolones is almost as old as these antimicrobial agents themselves, transferable mechanisms of quinolone resistance (TMQR) remained absent from the scenario for more than 36 years, appearing first as sporadic events and afterward as epidemics. In 1998, the first TMQR was soundly described, that is, QnrA. The presence of QnrA was almost anecdotal for years, but in the middle of the first decade of the 21st century, there was an explosion of TMQR descriptions, which definitively changed the epidemiology of quinolone resistance. Currently, 3 different clinically relevant mechanisms of quinolone resistance are encoded within mobile elements: (i) target protection, which is mediated by 7 different families of Qnr (QnrA, QnrB, QnrC, QnrD, QnrE, QnrS, and QnrVC), which overall account for more than 100 recognized alleles; (ii) antibiotic efflux, which is mediated by 2 main transferable efflux pumps (QepA and OqxAB), which together account for more than 30 alleles, and a series of other efflux pumps (e.g., QacBIII), which at present have been sporadically described; and (iii) antibiotic modification, which is mediated by the enzymes AAC(6')Ib-cr, from which different alleles have been claimed, as well as CrpP, a newly described phosphorylase.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Quinolonas/farmacologia , Proteínas de Escherichia coli/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA