Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Endocrinology ; 164(11)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37823477

RESUMO

The hormone ghrelin displays several well-characterized functions, including some with pharmaceutical interest. The receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), is expressed in the hypothalamic paraventricular nucleus (PVH), a critical hub for the integration of metabolic, neuroendocrine, autonomic, and behavioral functions. Here, we performed a neuroanatomical and functional characterization of the neuronal types mediating ghrelin actions in the PVH of male mice. We found that fluorescent ghrelin mainly labels PVH neurons immunoreactive for nitric oxide synthase 1 (NOS1), which catalyze the production of nitric oxide [NO]). Centrally injected ghrelin increases c-Fos in NOS1 PVH neurons and NOS1 phosphorylation in the PVH. We also found that a high dose of systemically injected ghrelin increases the ghrelin level in the cerebrospinal fluid and in the periventricular PVH, and induces c-Fos in NOS1 PVH neurons. Such a high dose of systemically injected ghrelin activates a subset of NOS1 PVH neurons, which do not express oxytocin, via an arcuate nucleus-independent mechanism. Finally, we found that pharmacological inhibition of NO production fully abrogates ghrelin-induced increase of calcium concentration in corticotropin-releasing hormone neurons of the PVH whereas it partially impairs ghrelin-induced increase of plasma glucocorticoid levels. Thus, plasma ghrelin can directly target a subset of NO-producing neurons of the PVH that is involved in ghrelin-induced activation of the hypothalamic-pituitary-adrenal neuroendocrine axis.


Assuntos
Hormônio Liberador da Corticotropina , Grelina , Camundongos , Masculino , Animais , Hormônio Liberador da Corticotropina/metabolismo , Grelina/farmacologia , Grelina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neurônios/metabolismo
2.
Nutr Neurosci ; 25(5): 1105-1114, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33151127

RESUMO

The orexin peptides promote hedonic intake and other reward behaviors through different brain sites. The opioid dynorphin peptides are co-released with orexin peptides but block their effects on reward in the ventral tegmental area (VTA). We previously showed that in the paraventricular hypothalamic nucleus (PVN), dynorphin and not orexin peptides enhance hedonic intake, suggesting they have brain-site-specific effects. Obesity alters the expression of orexin and dynorphin receptors, but whether their expression across different brain sites is important to hedonic intake is unclear. We hypothesized that hedonic intake is regulated by orexin and dynorphin peptides in PVN and that hedonic intake in obesity correlates with expression of their receptors. Here we show that in mice, injection of DYN-A1-13 (an opioid dynorphin peptide) in the PVN enhanced hedonic intake, whereas in the VTA, injection of OXA (orexin-A, an orexin peptide) enhanced hedonic intake. In PVN, OXA blunted the increase in hedonic intake caused by DYN-A1-13. In PVN, injection of norBNI (opioid receptor antagonist) reduced hedonic intake but a subsequent OXA injection failed to increase hedonic intake, suggesting that OXA activity in PVN is not influenced by endogenous opioid activity. In the PVN, DYN-A1-13 increased the intake of the less-preferred food in a two-food choice task. In obese mice fed a cafeteria diet, orexin 1 receptor mRNA across brain sites involved in hedonic intake correlated with fat preference but not caloric intake. Together, these data support that orexin and dynorphin peptides regulate hedonic intake in an opposing manner with brain-site-specific effects.


Assuntos
Dinorfinas , Núcleo Hipotalâmico Paraventricular , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/metabolismo , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos , Obesidade/metabolismo , Orexinas/metabolismo
3.
Brain Res Bull ; 177: 64-72, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536522

RESUMO

The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic control, which integrates thermoregulation centers and sympathetic outflow to thermoeffector organs. PVN neurons express the neuronal isoform of nitric oxide synthase (nNOS) whose expression is locally upregulated by physical exercise. Thus, the aim of the present study was to evaluate the role of nNOS in the PVN in the exercise-induced hyperthermia. Seven days after surgery, male Wistar rats received bilateral intra-PVN microinjections of the selective nNOS inhibitor Nw-Propyl-L-Arginine (NPLA) or vehicle (saline) and were submitted to an acute progressive exercise session on a treadmill until fatigue. Abdominal and tail skin temperature (Tabd and Ttail, respectively) were measured, and the threshold (Hthr; °C) and sensitivity (Hsen) for heat dissipation calculated. Performance variables were also collected. During the progressive exercise protocol, all animals displayed an increase in the Tabd. However, compared to vehicle group, the microinjection of NPLA in the PVN attenuated the exercise-induced hyperthermia. There was no difference in Ttail or Hthr between NPLA and control rats. In contrast, Hsen was increased in the NPLA group compared to vehicle. In addition, heat storage was lower in NPLA-treated animals. Despite the temperature differences, inhibition of nNOS in the PVN did not affect running performance on the treadmill. These results suggest that nitrergic signaling within the PVN, under nNOS activation, drives the increase of body temperature, being necessary for the proper thermal regulatory mechanisms during progressive exercise-induced hyperthermia.


Assuntos
Hipertermia Induzida , Núcleo Hipotalâmico Paraventricular , Animais , Hipotálamo/metabolismo , Masculino , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Wistar
4.
Biotechnol Rep (Amst) ; 28: e00567, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304841

RESUMO

The safety and bioactive potential of crude carotenoid extract from Cantaloupe melon nanoencapsulated in porcine gelatin (EPG) were evaluated in a chronic inflammatory experimental model. Animals were fed a high glycemic index and high glycemic load (HGLI) diet for 17 weeks and treated for ten days with 1) HGLI diet, 2) standard diet, 3) HGLI diet + crude carotenoid extract (CE) (12.5 mg/kg), and 4) HGLI diet + EPG (50 mg/kg). General toxicity signals were investigated, considering body weight, food intake, hematological, biochemical parameters, relative weight, morphology, and histopathology of organs. The biochemical parameters indicated the low toxicity of EPG. Acute hepatitis was observed in animals' livers, but CE and EPG groups presented improved tissue appearance. Chronic enteritis was observed in animals, with villi and intestinal glands preservation in the EPG group. The results suggest the safety and the bioactive effect of EPG, possibly related to its anti-inflammatory potential.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31293518

RESUMO

Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of ß2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, ß2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making ß2-tanycytes a hub for energy-related regulation of HPT axis activity. ß2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of ß2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, ß2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.

6.
Horm Behav ; 105: 138-145, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30138609

RESUMO

Vasoactive intestinal peptide (VIP) and corticotrophin-releasing factor (CRF) are anorexigenic neuropeptides that act in the hypothalamus to regulate food intake. Intracerebroventricular (ICV) microinjection of VIP promotes increased plasma adrenocorticotrophic hormone (ACTH) and corticosterone, indicating that VIP activates hypothalamic-pituitary-adrenal axis. The aim of this study was to evaluate the interaction between VIP and CRF, by verifying the effects of ICV administration of VIP on the activity of neurons and CRF mRNA expression in paraventricular nucleus of hypothalamus (PVN). In addition, it was evaluated the effects of pretreatment with CRF type 1 receptor (CRFR1) antagonist (Antalarmin, ANT) or CRF type 2 receptor (CRFR2) antagonist (Antisauvagine-30, AS30) on VIP-induced changes on food intake and plasma parameters of male rats. Compared to Saline group, VIP increased not only the number of Fos-related antigens (FRA)-immunoreactive neurons in the PVN but also CRF mRNA levels in this nucleus. Both ANT and AS30 treatment attenuated the inhibition of food intake promoted by VIP, ANT showing a more pronounced effect. Both antagonists also attenuated VIP-induced reduction and enhancement of free fatty acids and corticosterone plasma levels, respectively, and only AS30 was able to attenuate the hyperglycemia. These results suggest that CRF is an important mediador of VIP effects on energy balance, and CRFR1 and CRFR2 are involved in these responses.


Assuntos
Hormônio Liberador da Corticotropina/fisiologia , Transtornos da Alimentação e da Ingestão de Alimentos/sangue , Transtornos da Alimentação e da Ingestão de Alimentos/induzido quimicamente , Peptídeo Intestinal Vasoativo/efeitos adversos , Hormônio Adrenocorticotrópico/sangue , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Corticosterona/sangue , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ácidos Graxos/sangue , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Wistar , Peptídeo Intestinal Vasoativo/metabolismo
7.
Brain Res ; 1652: 43-52, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693394

RESUMO

Previously, we reported that microinjection of L-proline (L-Pro) into the paraventricular nucleus of the hypothalamus (PVN) caused vasopressin-mediated pressor responses in unanesthetized rats. In the present study, we report on the central mechanisms involved in the mediation of the cardiovascular effects caused by the microinjection of L-Pro into the PVN. Microinjection of increasing doses of L-Pro (3-100nmol/100nL) into the PVN caused dose-related pressor and bradycardic responses. No cardiovascular responses were observed after the microinjection of equimolar doses (33nmol/100nL) of its isomer D-Proline (D-Pro) or Mannitol. The PVN pretreatment with either a selective non-NMDA (NBQX) or selective NMDA (LY235959 or DL-AP7) glutamate receptor antagonists blocked the cardiovascular response to L-Pro (33nmol/100nL). The dose-effect curve for the pretreatment with increasing doses of LY235959 was located at the left in relation to the curves for NBQX and DL-AP7, showing that LY235959 is more potent than NBQX, which is more potent than DL-AP7 in inhibiting the cardiovascular response to L-Pro. The cardiovascular response to the microinjection of L-Pro into the PVN was not affected by local pretreatment with Nω-Propyl-l-arginine (N-Propyl), a selective inhibitor of the neuronal nitric oxide synthase (nNOS), suggesting that NO does not mediate the responses to L-Pro in the PVN. In conclusion, the results suggest that ionotropic receptors in the PVN, blocked by both NMDA and non-NMDA receptor antagonists, mediate the pressor response to L-Pro that results from activation of PVN vasopressinergic magnocellular neurons and vasopressin release into the systemic circulation.


Assuntos
Fármacos Cardiovasculares/administração & dosagem , Fármacos do Sistema Nervoso Central/administração & dosagem , Neurotransmissores/administração & dosagem , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Prolina/administração & dosagem , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Bradicardia/induzido quimicamente , Bradicardia/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Microinjeções , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Peptides ; 76: 14-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26654796

RESUMO

Food intake and physical activity are regulated by multiple neuropeptides, including orexin and dynorphin (DYN). Orexin-A (OXA) is one of two orexin peptides with robust roles in regulation of food intake and spontaneous physical activity (SPA). DYN collectively refers to several peptides, some of which act through opioid receptors (opioid DYN) and some whose biological effects are not mediated by opioid receptors (non-opioid DYN). While opioid DYN is known to increase food intake, the effects of non-opioid DYN peptides on food intake and SPA are unknown. Neurons that co-express and release OXA and DYN are located within the lateral hypothalamus. Limited evidence suggests that OXA and opioid DYN peptides can interact to modulate some aspects of behaviors classically related to orexin peptide function. The paraventricular hypothalamic nucleus (PVN) is a brain area where OXA and DYN peptides might interact to modulate food intake and SPA. We demonstrate that injection of des-Tyr-dynorphin (DYN-A(2-17), a non opioid DYN peptide) into the PVN increases food intake and SPA in adult mice. Co-injection of DYN-A(2-17) and OXA in the PVN further increases food intake compared to DYN-A(2-17) or OXA alone. This is the first report describing the effects of non-opioid DYN-A(2-17) on food intake and SPA, and suggests that DYN-A(2-17) interacts with OXA in the PVN to modulate food intake. Our data suggest a novel function for non-opioid DYN-A(2-17) on food intake, supporting the concept that some behavioral effects of the orexin neurons result from combined actions of the orexin and DYN peptides.


Assuntos
Dinorfinas/fisiologia , Orexinas/metabolismo , Fragmentos de Peptídeos/fisiologia , Animais , Regulação do Apetite , Ingestão de Energia , Masculino , Camundongos Endogâmicos BALB C , Atividade Motora
9.
Front Neuroanat ; 9: 130, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500509

RESUMO

Conventional neuroanatomical, immunohistochemical techniques, and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP)-containing magnocellular neurons (magnocells) in the hypothalamic paraventricular nucleus (PVN). Here, we used in vivo extracellular recording, juxtacellular labeling, post-hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus (SCN), lateral habenula (LHb), medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an "occasional" phenomenon as previously thought.

10.
Int. j. morphol ; 32(2): 575-582, jun. 2014. ilus
Artigo em Inglês | LILACS | ID: lil-714312

RESUMO

Binge alcohol drinking during adolescence has been associated with neurotoxicity and increased risk for the development of alcohol use disorders. There is evidence that acute and chronic ethanol administration alters c-fos expression, an indirect index of cellular activity, in different brain regions in adult rats. We evaluate here if a binge-like pattern of ethanol exposure during adolescence has a relevant impact on basal and/or ethanol-stimulated regional c-fos activity during adulthood. For that aim, Sprague-Dawley rats PND 25 were saline pre-treated, (SP group) or binge-ethanol pre-treated (BEP group) for two­consecutive days, at 48-h intervals, over a 14-day period (PND 25 to PND 38). At adult stage (PND 63) and following 25 ethanol-free days, we evaluated c-fos immunoreactivity in response to saline or acute ethanol (1.5 or 3.0 g/kg) in the hypothalamus and amygdala. We found that acute ethanol administration dose-dependently increased c-fos activity in the the Paraventricular nucleus of the hypothalamus (PVN). Interestingly, binge-ethanol exposure during adolescence significantly reduced basal c-fos activity during adulthood in the Central nucleus of the amygdala (CeA) and the Arcuate nucleus of hypothalamus (Arc). We conclude that binge-like ethanol administration during adolescence causes long-term disturbances in basal neural activity in brain areas critically involved with ethanol consumption.


El consumo en atracón durante la adolescencia está asociado con neurotoxicidad y con el riesgo de desarrollar un trastorno en el uso de alcohol. Diversos estudios muestran que la administración aguda y crónica de alcohol en ratas adultas altera la expresión de c-fos, un marcador indirecto de actividad celular, en diferentes áreas cerebrales. Nosotros evaluamos si el patrón de consumo de alcohol en atracón durante la adolescencia tiene un impacto en la actividad basal de c-fos en esas regiones activadas por el alcohol. Utilizamos ratas Sprague-Dawley en su día post-natal 25 (PND25) tratadas con suero salino (grupo SP) o con etanol tipo atracón (grupo BEP) durante dos días consecutivos, en intervalos de 48 h, durante 14 días (PND25- PND38). En la edad adulta (PND63) y después de 25 días sin etanol, evaluamos la inmunorreactividad para c-fos en respuesta a una administración aguda de suero salino o etanol (1,5 ó 3,0 g/kg) en diferentes regiones cerebrales. La administración de alcohol incrementó de manera dosis-dependiente la actividad de c-fos en el núcleo paraventricular del hipotálamo. Además la exposición a etanol tipo atracón durante la adolescencia disminuyó la actividad basal de c-fos en la adultez en el núcleo central de la amígdala y en el núcleo arqueado del hipotálamo. Concluimos que el consumo de alcohol en atracón durante la adolescencia causa problemas a largo plazo en la actividad basal de regiones cerebrales implicadas en el consumo de alcohol.


Assuntos
Animais , Ratos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Etanol/administração & dosagem , Núcleo Central da Amígdala/efeitos dos fármacos , Imuno-Histoquímica , Fatores Etários , Etanol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA