Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz J Microbiol ; 55(3): 2423-2435, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38652444

RESUMO

To investigate the impact of Poa alpigena Lindm on rhizosphere and bulk soil microorganisms in Haixin Mountain, Qinghai Lake, this study employed metagenomics technology to analyze the microbial communities of the samples. Results showed that 65 phyla, 139 classes, 278 orders, 596 families, 2376 genera, and 5545 species of soil microorganisms were identified from rhizosphere and bulk soil samples. Additionally, a microbial gene library specific to Poa alpigena Lindm was established for Qinghai Lake. Through α-diversity analysis, the richness and diversity of bulk microorganisms both significantly had a higher value than that in rhizosphere soil. The indicator microorganisms of rhizosphere and bulk soil at class level were Actinobacteria and Alphaproteobacteria, respectively. KEGG pathway analysis indicated that Carotenoid biosynthesis, Starch and sucrose metabolism, Bacterial chemotaxis, MAPK signaling pathway, Terpenoid backbone biosynthesis, and vancomycin resistance were the key differential metabolic pathways of rhizosphere soil microorganisms; in contrast, in bulk soil, the key differential metabolic were Benzoate degradation, Glycolysis gluconeogenesis, Aminobenzoate degradation, ABC transporters, Glyoxylate and dicarboxylate metabolism, oxidative phosphorylation, Degradation of aromatic compounds, Methane metabolism, Pyruvate metabolism and Microbial metabolism diverse environments. Our results indicated that Poa alpigena Lindm rhizosphere soil possessed selectivity for microorganisms in Qinghai Lake Haixin Mountain, and the rhizosphere soil also provided a suitable survival environment for microorganisms.


Assuntos
Bactérias , Lagos , Metagenômica , Rizosfera , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bactérias/enzimologia , Lagos/microbiologia , China , Filogenia , Microbiota , Biodiversidade , Metagenoma
2.
Braz J Microbiol ; 54(1): 385-395, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36371518

RESUMO

Whip smut is one of the most serious and widely spread sugarcane diseases. Plant-associated microbes play various roles in conferring advantages to the host plant. Understanding the microbes associated with sugarcane roots will help develop strategies for the biocontrol of smut. Therefore, the present study explored microbe-mediated sugarcane response to smut invasion via 16S rRNA and ITS metabarcoding survey of the rhizosphere soils of resistant and susceptible sugarcane varieties. The bacterial and fungal diversity in the rhizosphere soils differed between the resistant and susceptible varieties. The bacterial genera Sphingomonas, Microcoleus_Es-Yyy1400, Marmoricola, Reyranella, Promicromonospora, Iamia, Phenylobacterium, Aridibacter, Actinophytocola, and Edaphobacter and one fungal genus Cyphellophora were found associated with smut resistance in sugarcane. Detailed analysis revealed that the majority of bacteria were beneficial, including the actinomycete Marmoricola and Iamia and Reyranella with denitrification activity. Analysis of bacterial network interaction showed that three major groups interacted during smut invasion. Meanwhile, seven of these genera appeared to interact and promote each other's growth. Finally, functional annotation based on the Functional Annotation of Prokaryotic Taxa (FAPROTAX) database predicted that the abundant bacteria are dominated by oxygenic photoautotrophy, photoautotrophy, and phototrophy functions, which may be related to smut resistance in sugarcane. The present study thus provides new insights into the dynamics of the sugarcane rhizosphere microbial community during smut invasion.


Assuntos
Actinomycetales , Saccharum , Ustilaginales , Saccharum/microbiologia , Rizosfera , RNA Ribossômico 16S , Ustilaginales/genética , Bactérias/genética , Actinomycetales/genética , Solo
3.
Rev. argent. microbiol ; 54(4): 91-100, dic. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1422970

RESUMO

Abstract Diverse habitats have been screened for novel antimicrobial actinomycetes, while others remain unexplored. In this study, we analyzed the bioactivities of actinomycetes cul-tured from rhizosphere soils of the desert plant Artemisia tridentata and the nearby bulk soils. Actinomycetes were screened for antifungal and antibacterial activities toward a panel of plant pathogens; all comparisons were between activities of rhizosphere soil isolates toward those of its counterpart bulk soil. A selected group of the strongest antifungal isolates were also tested against two antifungal-drug resistant strains of Candida albicans. 16S rDNA partial sequences and phylogenetic analysis of isolates that showed broad-spectrum antifungal activities were performed. Forty-two out of 200 and two soil isolated actinomycetes were selected for their strong antifungal activities. The highest proportion of isolates (p <0.05) from rhizosphere soil of an old plant showed antagonism against gram-positive bacteria (0.483 and 0.224 propor-tions against Bacillus subtilis and Rathayibacter tritici, respectively), and phytopathogenic fungi (0.259, 0.431, and 0.345 proportions against Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum, respectively), while the highest antagonism against the gram-negative bacteria predominated in isolates from the bulk soils. Isolates from a rhizosphere soil of a young plant were characterized for strong antagonist activities against Fusarium oxysporum (0.333 proportion, p<0.05). Phylogenetic analysis of 16S rDNA sequences showed that isolates that exhibited strong antifungal activity were genetically similar. We conclude that the rhizosphere soil of A. tridentata is an excellent source for discovery of actinomycetes with potentially novel antifungal compounds.


Resumen En la búsqueda de actinomicetos antimicrobianos se han estudiado diversos hábitats, pero muchos permanecen aún sin explorar. En este estudio analizamos las actividades biológicas de cultivos de actinomicetos provenientes de suelos rizosféricos de la planta desértica Artemisia tridentata y de suelos no asociados a sus raíces. Los actinomicetos fueron seleccionados por sus actividades antifúngicas y antibacterianas contra un panel de patógenos de plantas. Todas las comparaciones fueron entre las actividades de los aislados rizosféricos y aquellas de los aislados no asociados a las raíces. Un grupo selecto de los aislados con las mayores actividades antifúngicas fueron también evaluados contra 2 cepas de Candida albicans resistentes a antifúngicos. Se realizó la secuenciación parcial del ARNr 16S y el análisis filogenético de los aislados que mostraron actividades antifúngicas de amplio espectro. Se seleccionaron 42 de 202 actinomicetos aislados por sus fuertes actividades antifúngicas. La mayor proporción de aislados de suelo rizosférico de plantas viejas mostraron antagonismo contra bacterias gram positivas y hongos fitopatógenos (proporciones de 0,259; 0,431 y 0,345 contra Fusarium oxyspo-rum, Rhizoctonia solani y Pythium ultimum, respectivamente), mientras que la mayor actividad antagónica contra las bacterias gram negativas predominaron en aislados de suelo no asociado a raíces. Los aislados de suelo rizosférico de plantas jóvenes se caracterizaron por una fuerte actividad antagónica contra F. oxysporum (proporción de 0,333, p < 0,05). El análisis filogenético de secuencias del ADNr 16S mostró que los aislados que presentaron fuerte actividad antifúng-ica fueron genéticamente similares. Concluimos que el suelo rizosférico de A. tridentata es una fuente excelente para el descubrimiento de actinomicetos productores de compuestos antifúngicos potencialmente novedosos.

4.
Rev Argent Microbiol ; 54(4): 326-334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35725666

RESUMO

Diverse habitats have been screened for novel antimicrobial actinomycetes, while others remain unexplored. In this study, we analyzed the bioactivities of actinomycetes cultured from rhizosphere soils of the desert plant Artemisia tridentata and the nearby bulk soils. Actinomycetes were screened for antifungal and antibacterial activities toward a panel of plant pathogens; all comparisons were between activities of rhizosphere soil isolates toward those of its counterpart bulk soil. A selected group of the strongest antifungal isolates were also tested against two antifungal-drug resistant strains of Candida albicans. 16S rDNA partial sequences and phylogenetic analysis of isolates that showed broad-spectrum antifungal activities were performed. Forty-two out of 200 and two soil isolated actinomycetes were selected for their strong antifungal activities. The highest proportion of isolates (p<0.05) from rhizosphere soil of an old plant showed antagonism against gram-positive bacteria (0.483 and 0.224 proportions against Bacillus subtilis and Rathayibacter tritici, respectively), and phytopathogenic fungi (0.259, 0.431, and 0.345 proportions against Fusarium oxysporum, Rhizoctonia solani and Pythium ultimum, respectively), while the highest antagonism against the gram-negative bacteria predominated in isolates from the bulk soils. Isolates from a rhizosphere soil of a young plant were characterized for strong antagonist activities against Fusarium oxysporum (0.333 proportion, p<0.05). Phylogenetic analysis of 16S rDNA sequences showed that isolates that exhibited strong antifungal activity were genetically similar. We conclude that the rhizosphere soil of A. tridentata is an excellent source for discovery of actinomycetes with potentially novel antifungal compounds.


Assuntos
Actinobacteria , Artemisia , Streptomyces , Filogenia , Microbiologia do Solo , Antifúngicos , Artemisia/genética , Artemisia/microbiologia , Actinomyces/genética , Actinobacteria/genética , Rizosfera , Solo , DNA Ribossômico/genética , Doenças das Plantas/microbiologia
5.
Rev. bras. farmacogn ; 25(2): 117-123, Mar-Apr/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-749857

RESUMO

Abstract The effects of allelochemicals and aqueous extracts from different Pogostemon cablin (Blanco) Benth., Lamiaceae, parts and rhizosphere soil on growth parameters, leaf membrane peroxidation and leaf antioxidant enzymes were investigated in patchouli. P. cablin seedlings were incubated in solutions containing allelochemicals and aqueous extracts from different patchouli parts and its rhizosphere soil at several concentrations. Firstly, the growth parameters were significantly reduced by the highest concentration of leaves, roots and stems extracts (p < 0.05). As compared to the control, plant height was reduced by 99.8% in the treatment with leaves extracts (1:10). The malondialdehyde content increased greatly when patchouli seedlings were subject to different concentrations of leaves, roots and stems extracts; meanwhile, the superoxide dismutase and peroxidase activities showed an increase trend at the low concentration, followed by a decline phase at the high concentration of roots and leaves extracts (1:10). What's more, leaves and roots extracts had a more negative effect on patchouli growth than stems extracts at the same concentrations. Secondly, the total fresh mass, root length and plant height were greatly reduced by the highest strength of soil extracts. Their decrements were 22.7, 74.9, and 33.1%, respectively. Thirdly, growth parameters and enzymatic activities varied considerably with the kinds of allelochemicals and with the different concentrations. Plant height, root length and total fresh weight of patchouli were greatly reduced by p-hydroxybenzoic acid (200 μM), and their decrements were 77.0, 42.0 and 70.0%, respectively. Finally, three useful measures on reducing the autotoxicity during the sustainable patchouli production were proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA