Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501285

RESUMO

The nanoencapsulation of nitric oxide (NO) donors is an attractive technique to protect these molecules from rapid degradation, expanding, and enabling their use in agriculture. Here, we evaluated the effect of the soil application of chitosan nanoparticles containing S-nitroso-MSA (a S-nitrosothiol) on the protection of soybeans (Glycine max cv. BRS 257) against copper (Cu) stress. Soybeans were grown in a greenhouse in soil supplemented with 164 and 244 mg kg-1 Cu and treated with a free or nanoencapsulated NO donor at 1 mM, as well as with nanoparticles without NO. There were also soybean plants treated with distilled water and maintained in soil without Cu addition (control), and with Cu addition (water). The exogenous application of the nanoencapsulated and free S-nitroso-MSA improved the growth and promoted the maintenance of the photosynthetic activity in Cu-stressed plants. However, only the nanoencapsulated S-nitroso-MSA increased the bioavailability of NO in the roots, providing a more significant induction of the antioxidant activity, the attenuation of oxidative damage, and a greater capacity to mitigate the root nutritional imbalance triggered by Cu stress. The results suggest that the nanoencapsulation of the NO donors enables a more efficient delivery of NO for the protection of soybean plants under Cu stress.

2.
New Phytol ; 234(4): 1119-1125, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266146

RESUMO

Nitric oxide (NO) is a multifunctional gaseous signal that modulates the growth, development and stress tolerance of higher plants. NO donors have been used to boost plant endogenous NO levels and to activate NO-related responses, but this strategy is often hindered by the relative instability of donors. Alternatively, nanoscience offers a new, promising way to enhance NO delivery to plants, as NO-releasing nanomaterials (e.g. S-nitrosothiol-containing chitosan nanoparticles) have many beneficial physicochemical and biochemical properties compared to non-encapsulated NO donors. Nano NO donors are effective in increasing tissue NO levels and enhancing NO effects both in animal and human systems. The authors believe, and would like to emphasize, that new trends and technologies are essential for advancing plant NO research and nanotechnology may represent a breakthrough in traditional agriculture and environmental science. Herein, we aim to draw the attention of the scientific community to the potential of NO-releasing nanomaterials in both basic and applied plant research as alternatives to conventional NO donors, providing a brief overview of the current knowledge and identifying future research directions. We also express our opinion about the challenges for the application of nano NO donors, such as the environmental footprint and stakeholder's acceptance of these materials.


Assuntos
Quitosana , Óxido Nítrico , Agricultura , Animais , Biotecnologia , Nanotecnologia , Plantas
3.
Ecotoxicol Environ Saf ; 225: 112713, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478983

RESUMO

Despite the important role played by nitric oxide (NO) in plants subjected to abiotic stress, NO donors application to induce drought tolerance in neotropical tree seedlings has not yet been tested. It is also worth investigating whether NO bioactivity in drought-stressed seedlings could be potentiated by NO donors nanoencapsulation. The aim of the current study is to evaluate the effects of chitosan nanoparticles (NPs) containing S-nitroso-mercaptosuccinic acid (S-nitroso-MSA) on drought-stressed seedlings of neotropical tree species Heliocarpus popayanensis Kunth in comparison to free NO donor and NPs loaded with non-nitrosated MSA. Nanoencapsulation slowed down NO release from S-nitroso-MSA, and nanoencapsulated S-nitroso-MSA yielded 2- and 1.6-fold higher S-nitrosothiol levels in H. popayanensis roots and leaves, respectively, than the free NO donor. S-nitroso-MSA has prevented drought-induced CO2 assimilation inhibition, regardless of nanoencapsulation, but the nanoencapsulated NO donor has induced earlier ameliorative effect. Both NO and MSA have decreased oxidative stress in H. popayanensis roots, but this effect was not associated with antioxidant enzyme induction, with higher seedling biomass, or with proline and glycine betaine accumulation. Nanoencapsulated S-nitroso-MSA was the only formulation capable of increasing leaf relative water content in drought-stressed plants (from 32.3% to 60.5%). In addition, it induced root hair formation (increase by 36.6% in comparison to well-hydrated plants). Overall, results have evidenced that nanoencapsulation was capable of improving the protective effect of S-nitroso-MSA on H. popayanensis seedlings subjected to drought stress, a fact that highlighted the potential application of NO-releasing NPs to obtain drought-tolerant tree seedlings for reforestation programs.


Assuntos
Quitosana , Plântula , Secas , Óxido Nítrico , Doadores de Óxido Nítrico/farmacologia , Fotossíntese , Folhas de Planta
4.
J Colloid Interface Sci ; 576: 457-467, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32470853

RESUMO

HYPOTHESIS: Nitric oxide (NO)-releasing Pluronic F127 hydrogels (F127) containing dissolved S-nitrosothiols or pendant N-diazeniumdiolate (NONOate) groups have been described. The NO charging of these hydrogels is usually limited by their low stability or disruption of the micellar packing. S-nitrosothiol-terminated F127 may emerge as a new strategy for allowing NO delivery at different rates in biomedical applications. EXPERIMENTS: Terminal hydroxyl groups of F127 were esterified and reduced to produce F127-mercaptopropionate (HS-F127-SH), which was subsequently S-nitrosated to generate S-nitrosothiol-terminated F127 (ONS-F127-SNO). Micro-differential scanning calorimetry, 1H NMR spin-spin relaxation (T2), temperature-dependent small-angle X-ray scattering, and cryo-transmission electron microscopy, were used to determine the micellar packing structure, while real-time chemiluminescence NO detection and UV-Vis spectrophotometry were used to evaluate the kinetics of NO release. FINDINGS: HS-F127-SH micellization and gelation processes were analogous to native F127, however, with a decreased short-range ordering of the micelles. ONS-F127-SNO hydrogels released NO thorough a preferentially intramicellar SNO dimerization reaction. Increasing ONS-F127-SNO concentration reduces the rate of SNO dimerization and increases the overall rate of NO release to the gas phase, opening up new possibilities for tailoring NO delivery from F127-based hydrogels.

5.
Nitric Oxide ; 98: 41-49, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147583

RESUMO

Polymeric biomaterials capable of delivering nitric oxide (NO) topically can be used to enhance skin blood flow (SkBF) and accelerate wound healing. Herein, we used reversible addition-fragmentation chain transfer radical (RAFT) polymerization to synthesize the first poly(vinyl alcohol) (PVA) functionalized with terminal NO-releasing S-nitrosothiol (RSNO) groups for topical NO delivery. This strategy was based on the synthesis of a precursor amino-terminated PVA (PVA-NH2), which was next functionalized with iminothiolane yielding 4-imino-4-amino-PVA-butane-1-thiol (PVA-SH), and finally S-nitrosated yielding S-nitroso 4-imino-4-amino-PVA-butane-1-thiol (PVA-SNO). Real-time chemiluminescence NO detection showed that blended films of pure PVA with PVA-SNO with mass ratios 30:70, 50:50 and 70:30 release NO with initial rates ranging from 1 to 12 nmol g-1 min-1, and lead to a 2 to 10-fold dose-response increase in the SkBF, after topical application on the ventral forearm of volunteers. These results show that PVA-SNO is a potential platform for topical NO delivery in biomedical applications.


Assuntos
Óxido Nítrico/metabolismo , Álcool de Polivinil/metabolismo , S-Nitrosoglutationa/metabolismo , Pele/metabolismo , Velocidade do Fluxo Sanguíneo , Humanos , Pele/irrigação sanguínea
6.
ACS Biomater Sci Eng ; 6(4): 2117-2134, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33455338

RESUMO

Nitric oxide (NO) and silver nanoparticles (AgNPs) are well-known for their antibacterial activity. In this work, S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), a NO donor, and green tea synthesized AgNPs were individually or simultaneously incorporated into alginate hydrogel for topical antibacterial applications. The obtained hydrogels were characterized and the NO release and diffusion of AgNPs and S-nitroso-MSA from alginate hydrogels were investigated. The hydrogels showed a concentration dependent toxicity toward Vero cells. The potent antibacterial effect of the hydrogels was demonstrated toward Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and Streptococcus mutans UA159. Interestingly, the combination of S-nitroso-MSA and AgNPs into alginate hydrogels had a superior antibacterial effect, compared with hydrogels containing S-nitroso-MSA or AgNPs individually. This is the first report to describe the synthesis, cytotoxicity, and antibacterial effects of alginate hydrogel containing NO donor and AgNPs. These hydrogels might find important local applications in the combat of bacterial infections.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Prata , Alginatos , Animais , Antibacterianos/farmacologia , Chlorocebus aethiops , Hidrogéis , Doadores de Óxido Nítrico/farmacologia , Prata/farmacologia , Células Vero
7.
Nitric Oxide ; 84: 38-44, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639449

RESUMO

The entrapment of NO donors in nanomaterials has emerged as a strategy to protect these molecules from rapid degradation, allowing a more controlled release of NO and prolonging its effect. On the other hand, we have found beneficial effects of S-nitrosoglutathione (GSNO) - a NO donor - supplying to sugarcane plants under water deficit. Here, we hypothesized that GSNO encapsulated into nanoparticles would be more effective in attenuating the effects of water deficit on sugarcane plants as compared to the supplying of GSNO in its free form. The synthesis and characterization of chitosan nanoparticles containing GSNO were also reported. Sugarcane plants were grown in nutrient solution, and then subjected to the following treatments: control (well-hydrated); water deficit (WD); WD + GSNO sprayed in its free form (WDG) or encapsulated (WDG-NP). In general, both GSNO forms attenuated the effects of water deficit on sugarcane plants. However, the encapsulation of this donor into chitosan nanoparticles caused higher photosynthetic rates under water deficit, as compared to plants supplied with free GSNO. The root/shoot ratio was also increased when encapsulated GSNO was supplied, indicating that delayed release of NO improves drought tolerance of sugarcane plants. Our results provide experimental evidence that nanotechnology can be used for enhancing NO-induced benefits for plants under stressful conditions, alleviating the negative impact of water deficit on plant metabolism and increasing biomass allocation to root system.


Assuntos
Quitosana/química , Nanopartículas/química , Doadores de Óxido Nítrico/farmacologia , S-Nitrosoglutationa/farmacologia , Saccharum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Biomassa , Preparações de Ação Retardada/química , Secas , Portadores de Fármacos/química , Doadores de Óxido Nítrico/síntese química , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , S-Nitrosoglutationa/síntese química
8.
Mol Pharm ; 15(3): 1160-1168, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29378125

RESUMO

Melanoma is a malignant proliferative disease originated from melanocyte transformations, which are characterized by a high metastatic rate and mortality. Advances in Nanotechnology have provided useful new approaches and tools for antitumor chemotherapy. The aim of this study was to investigate the molecular mechanisms underlying chitosan nanoparticles containing S-nitrosomercaptosuccinic acid ( S-nitroso-MSA-CS) induced cytotoxicity in melanoma cells. S-Nitroso-MSA-CS induced concentration-dependent cell death against B16-F10 tumor cells, whereas non-nitroso nanoparticles (CS or MSA-CS) did not induce significant cytotoxicity. Additionally, melanoma cells were more sensitive to cell death than normal melanocytes. S-Nitroso-MSA-CS-induced cytotoxicity exhibited features of caspase-dependent apoptosis, and it was associated with oxidative stress, characterized by increased mitochondrial superoxide production and oxidation of protein thiol groups. In addition, tyrosine nitration and cysteine S-nitrosylation of amino acid residues in cellular proteins were observed. The potential use of these nanoparticles in antitumor chemotherapy of melanoma is discussed.


Assuntos
Apoptose/efeitos dos fármacos , Portadores de Fármacos/química , Melanoma/tratamento farmacológico , S-Nitrosotióis/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Quitosana/química , Ensaios de Seleção de Medicamentos Antitumorais , Melanócitos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , S-Nitrosotióis/uso terapêutico , Superóxidos/metabolismo
9.
Nitric Oxide ; 68: 77-90, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28109803

RESUMO

Despite the significant impacts of light on nitric oxide (NO) levels in plants, the mechanism underlying the influence of this environmental factor on NO metabolism remains poorly understood. A critical mechanism controlling NO levels in plant cells relies on the S-nitrosylation of glutathione (GSH), giving rise to S-nitrosoglutathione (GSNO), which can be either stored or degraded depending on the cellular context. Here, we demonstrate that a strict balance is maintained between NO generation and scavenging during tomato (Solanum lycopersicum) seedling deetiolation. Given the absence of accurate methods in the literature to estimate NO scavenging in planta, we first developed a simple, robust system to continuously monitor the global in vivo NO scavenging by plant tissues. Then, using photomorphogenic tomato mutants, we demonstrated that the light-evoked de-etiolation is associated with a dramatic rise in NO content followed by a progressive increment in NO scavenging capacity of the tissues. Light-driven increments in NO scavenging rates coincided with pronounced rises in S-nitrosothiol content and GSNO reductase (GSNOR) activity, thereby suggesting that GSNO formation and subsequent removal via GSNOR might be key for controlling NO levels during seedling deetiolation. Accordingly, treatments with thiol-blocking compounds further indicated that thiol nitrosylation might be critically involved in the NO scavenging mechanism responsible for maintaining NO homeostasis during deetiolation. The impacts of both light and NO on the transcriptional profile of glutathione metabolic genes also revealed an independent but coordinated action of these signals on the regulation of key components of glutathione and GSNO metabolisms. Altogether, these data indicated that GSNO formation and subsequent removal might facilitate maintaining NO homeostasis during light-driven seedling deetiolation.


Assuntos
Estiolamento , Homeostase/efeitos da radiação , Luz , Óxido Nítrico/metabolismo , Plântula/metabolismo , Plântula/efeitos da radiação , Aldeído Oxirredutases/metabolismo , Sequestradores de Radicais Livres , Glutationa/química , Glutationa/metabolismo , Óxido Nítrico/química , Reação em Cadeia da Polimerase , Plântula/crescimento & desenvolvimento
10.
Clinics (Sao Paulo) ; 65(7): 715-21, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20668630

RESUMO

BACKGROUND: Steatosis is currently the most common chronic liver disease and it can aggravate ischemia-reperfusion (IR) lesions. We hypothesized that S-nitroso-N-acetylcysteine (SNAC), an NO donor component, can ameliorate cell damage from IR injury. In this paper, we report the effect of SNAC on liver IR in rats with normal livers compared to those with steatotic livers. METHODS: Thirty-four rats were divided into five groups: I (n=8), IR in normal liver; II (n=8), IR in normal liver with SNAC; III (n=9), IR in steatotic liver; IV (n=9), IR in steatotic liver with SNAC; and V (n=10), SHAN. Liver steatosis was achieved by administration of a protein-free diet. A SNAC solution was infused intraperitoneally for one hour, beginning 30 min. after partial (70%) liver ischemia. The volume of solution infused was 1 ml/100 g body weight. The animals were sacrificed four hours after reperfusion, and the liver and lung were removed for analysis. We assessed hepatic histology, mitochondrial respiration, oxidative stress (MDA), and pulmonary myeloperoxidase. RESULTS: All groups showed significant alterations compared with the group that received SHAN. The results from the steatotic SNAC group revealed a significant improvement in liver mitochondrial respiration and oxidative stress compared to the steatotic group without SNAC. No difference in myeloperoxidase was observed. Histological analysis revealed no difference between the non-steatotic groups. However, the SNAC groups showed less intraparenchymal hemorrhage than groups without SNAC (p=0.02). CONCLUSION: This study suggests that SNAC effectively protects against IR injury in the steatotic liver but not in the normal liver.


Assuntos
Acetilcisteína/análogos & derivados , Fígado Gorduroso/tratamento farmacológico , Sequestradores de Radicais Livres/farmacologia , Fígado/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Acetilcisteína/farmacologia , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA