Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
World J Exp Med ; 14(2): 91519, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948421

RESUMO

Mitochondrial dysfunction is a key driver of cardiovascular disease (CVD) in metabolic syndrome and diabetes. This dysfunction promotes the production of reactive oxygen species (ROS), which cause oxidative stress and inflammation. Angiotensin II, the main mediator of the renin-angiotensin-aldosterone system, also contributes to CVD by promoting ROS production. Reduced activity of sirtuins (SIRTs), a family of proteins that regulate cellular metabolism, also worsens oxidative stress. Reduction of energy production by mitochondria is a common feature of all metabolic disorders. High SIRT levels and 5' adenosine monophosphate-activated protein kinase signaling stimulate hypoxia-inducible factor 1 beta, which promotes ketosis. Ketosis, in turn, increases autophagy and mitophagy, processes that clear cells of debris and protect against damage. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), a class of drugs used to treat type 2 diabetes, have a beneficial effect on these mechanisms. Randomized clinical trials have shown that SGLT2i improves cardiac function and reduces the rate of cardiovascular and renal events. SGLT2i also increase mitochondrial efficiency, reduce oxidative stress and inflammation, and strengthen tissues. These findings suggest that SGLT2i hold great potential for the treatment of CVD. Furthermore, they are proposed as anti-aging drugs; however, rigorous research is needed to validate these preliminary findings.

2.
Biochem Biophys Rep ; 38: 101716, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38737726

RESUMO

The cytosolic enzymes N-Acetyl Transferases 1 and 2 (NATs) transfer an acetyl group from acetyl-CoA to a xenobiotic substrate. NATs are regulated at the genetic and epigenetic levels by deacetylase enzymes such as sirtuins. The enzymatic expression of NAT1, NAT2, and SIRT1 was evaluated by flow cytometry, as well as the enzymatic activity of NATs by cell culture and HPLC analysis. Six SNPs were determined through genotyping. T2D patients (n = 29) and healthy subjects (n = 25) with a median age of 57 and 50, respectively, were recruited. An increased enzyme expression and a diminished NAT2 enzymatic activity were found in cells of T2D patients compared to the control group, while NAT1 was negatively correlated with body fat percentage and BMI. In contrast, Sirtuin inhibition increased NAT2 activity, while Sirtuin agonism decreased its activity in both groups. The analysis of NAT2 SNPs showed a higher frequency of rapid acetylation haplotypes in T2D patients compared to the control group, possibly associated as a risk factor for diabetes. The enzymatic expression of CD3+NAT2+ cells was higher in the rapid acetylators group compared to the slow acetylators group. The levels and activity of NAT1 were associated with total cholesterol and triglycerides. Meanwhile, CD3+NAT2+ cells and NAT2 activity levels were associated with HbA1c and glucose levels. The results indicate that NAT2 could be involved in metabolic processes related to the development of T2D, due to its association with glucose levels, HbA1c, and the altered SIRT-NAT axis. NAT1 may be involved with dyslipidaemias in people who are overweight or obese.

3.
Gene ; 915: 148428, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38575099

RESUMO

To assess and validate the gene expression profile of SIRTs (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7) in relation to the pathogenesis and prognostic progression of Myelodysplastic neoplasm (MDS). Eighty bone marrow samples of patients with de novo MDS were diagnosed according to WHO 2022 and IPSS-R criteria. Ten bone marrow samples were obtained from elderly healthy volunteers and used as control samples. Gene expression levels of all SIRTs were assessed using RT-qPCR assays. Downregulation of SIRT2 (p = 0.009), SIRT3 (p = 0.048), SIRT4 (p = 0.049), SIRT5 (p = 0.046), SIRT6 (p = 0.043), and SIRT7 (p = 0.047) was identified in MDS patients compared to control individuals. Also, we identified that while SIRT2-7 genes are typically down-regulated in MDS patients compared to normal controls, there are relative expression variations among MDS patient subgroups. Specifically, SIRT4 (p = 0.029) showed increased expression in patients aged 60 or above, and both SIRT2 (p = 0.016) and SIRT3 (p = 0.036) were upregulated in patients with hemoglobin levels below 8 g/dL. SIRT2 (p = 0.045) and SIRT3 (p = 0.033) were highly expressed in patients with chromosomal abnormalities. Different SIRTs exhibited altered expression patterns concerning specific MDS clinical and prognostic characteristics. The downregulation in SIRTs genes (e.g., SIRT2 to SIRT7) expression in Brazilian MDS patients highlights their role in the disease's development. The upregulation of SIRT2 and SIRT3 in severe anemia patients suggests a potential link to manage iron overload-related complications in transfusion-dependent patients. Moreover, the association of SIRT2/SIRT3 with genomic instability and their role in MDS progression signify promising areas for future research and therapeutic targets. These findings underscore the importance of SIRT family in understanding and addressing MDS, offering novel clinical, prognostic, and therapeutic insights for patients with this condition.


Assuntos
Proteínas Mitocondriais , Síndromes Mielodisplásicas , Sirtuína 3 , Sirtuínas , Humanos , Sirtuínas/genética , Sirtuínas/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Prognóstico , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Adulto , Idoso de 80 Anos ou mais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Estudos de Casos e Controles
4.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540672

RESUMO

As temperatures continue to modify due to weather changes, more regions are being exposed to extreme heat and cold. Physiological distress due to low and high temperatures can affect the heart, blood vessels, liver, and especially, the kidneys. Dehydration causes impaired cell function and heat itself triggers cellular stress. The decline in circulating plasma volume by sweat, which stresses the renal and cardiovascular systems, has been related to some molecules that are crucial players in preventing or provoking cellular damage. Hypovolemia and blood redistribution to cutaneous blood vessels reduce perfusion to the kidney triggering the activation of the renin-angiotensin-aldosterone system. In this review, we expose a deeper understanding of the modulation of molecules that interact with other proteins in humans to provide significant findings in the context of extreme heat and cold environments and renal damage reversal. We focus on the molecular changes exerted by temperature and dehydration in the renal system as both parameters are heavily implicated by weather change (e.g., vasopressin-induced fructose uptake, fructogenesis, and hypertension). We also discuss the compensatory mechanisms activated under extreme temperatures that can exert further kidney injury. To finalize, we place special emphasis on the renal mechanisms of protection against temperature extremes, focusing on two important protein groups: heat shock proteins and sirtuins.


Assuntos
Desidratação , Nefropatias , Humanos , Desidratação/metabolismo , Mudança Climática , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Temperatura
5.
Curr Pharm Des ; 30(13): 969-974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551044

RESUMO

In metabolic syndrome and diabetes, compromised mitochondrial function emerges as a critical driver of cardiovascular disease, fueling its development and persistence, culminating in cardiac remodeling and adverse events. In this context, angiotensin II - the main interlocutor of the renin-angiotensin-aldosterone system - promotes local and systemic oxidative inflammatory processes. To highlight, the low activity/expression of proteins called sirtuins negatively participates in these processes, allowing more significant oxidative imbalance, which impacts cellular and tissue responses, causing tissue damage, inflammation, and cardiac and vascular remodeling. The reduction in energy production of mitochondria has been widely described as a significant element in all types of metabolic disorders. Additionally, high sirtuin levels and AMPK signaling stimulate hypoxia- inducible factor 1 beta and promote ketonemia. Consequently, enhanced autophagy and mitophagy advance through cardiac cells, sweeping away debris and silencing the orchestra of oxidative stress and inflammation, ultimately protecting vulnerable tissue from damage. To highlight and of particular interest, SGLT2 inhibitors (SGLT2i) profoundly influence all these mechanisms. Randomized clinical trials have evidenced a compelling picture of SGLT2i emerging as game-changers, wielding their power to demonstrably improve cardiac function and slash the rates of cardiovascular and renal events. Furthermore, driven by recent evidence, SGLT2i emerge as cellular supermolecules, exerting their beneficial actions to increase mitochondrial efficiency, alleviate oxidative stress, and curb severe inflammation. Its actions strengthen tissues and create a resilient defense against disease. In conclusion, like a treasure chest brimming with untold riches, the influence of SGLT2i on mitochondrial function holds untold potential for cardiovascular health. Unlocking these secrets, like a map guiding adventurers to hidden riches, promises to pave the way for even more potent therapeutic strategies.


Assuntos
Mitocôndrias , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle
6.
P R Health Sci J ; 42(4): 269-275, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38104282

RESUMO

Sirtuins (SIRTs) constitute a family of enzyme-type proteins dependent on nicotinamide adenine dinucleotide. These enzymes are considered cellular metabolic sensors since the cell's energy level can regulate their activity to compensate for energy fluctuations. They constitute an evolutionarily conserved family of deacetylases class III enzymes, with a recognized role in prolonging life expectancy. Sirtuins are related to the development of age-associated pathologies, such as cancer, diabetes, neurodegeneration, and metabolic disorders. This group of enzymes has become a possible therapeutic target due to their capacity for modulating cellular processes, such as genome repair and maintenance, and for regulating metabolic pathways, homeostasis, and cell proliferation. In addition, SIRTs are associated with pathologies such as cancer and COVID-19. There is a need for future studies that will clarify the relationship between these enzymes group and the prevention and development of diseases.


Assuntos
Neoplasias , Sirtuínas , Humanos , Sirtuínas/genética , Sirtuínas/metabolismo , Neoplasias/terapia
7.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833921

RESUMO

Leukemias of the AML, CML, and CLL types are the most common blood cancers worldwide, making them a major global public health problem. Furthermore, less than 24% of patients treated with conventional chemotherapy (low-risk patients) and 10-15% of patients ineligible for conventional chemotherapy (high-risk patients) survive five years. The low levels of survival are mainly due to toxicity and resistance to chemotherapy or other medication, the latter leading to relapse of the disease, which is the main obstacle to the treatment of leukemia. Drug resistance may include different molecular mechanisms, among which epigenetic regulators are involved. Silent information regulator 2 homolog 1 (SIRT1) is an epigenetic factor belonging to the sirtuin (SIRT) family known to regulate aspects of chromatin biology, genome stability, and metabolism, both in homeostasis processes and in different diseases, including cancer. The regulatory functions of SIRT1 in different biological processes and molecular pathways are dependent on the type and stage of the neoplasia; thus, it may act as both an oncogenic and tumor suppressor factor and may also participate in drug resistance. In this review, we explore the role of SIRT1 in drug-resistant leukemia and its potential as a therapeutic target.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Hematológicas , Leucemia , Sirtuína 1 , Humanos , Cromatina , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Leucemia/genética , Leucemia/terapia , Sirtuína 1/genética , Sirtuína 1/metabolismo
8.
Antioxid Redox Signal ; 39(16-18): 1185-1208, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37767625

RESUMO

Significance: Sirtuins are NAD+-dependent histone deacetylases regulating important processes in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis. Recent Advances: Despite initially being discovered to regulate transcription and life span via histone deacetylase activities, emerging data continually uncover new targets and propose additional roles. Due to the outstanding importance of the sirtuins in the control of the inflammatory response, their roles in the pathogenesis of several inflammatory-based diseases have become an area of intense research. Although sirtuins have been traditionally regarded as anti-inflammatory players, several recent findings suggest that their role in inflammation is complex and that in some cases sirtuins can indeed promote inflammation. Critical Issues: In this article, we provide an update on the latest findings concerning the new mechanisms of action and concepts about the role of sirtuins during inflammation. We focus on the impact that inflammatory-based processes exert on the liver, adipose tissue, and nervous system as well as on macrophage function and activation. Also, we discuss available data pointing to the dual role that, in particular contexts, sirtuins may have on inflammation control. Future Directions: Since the knowledge of sirtuin impact on metabolism is continually expanding, new venues of research arise. Besides become being regarded as candidates of therapeutic targets, posttranscriptional control of sirtuin expression by means of microRNAs challenges our traditional concepts of sirtuin regulation; importantly, the emerging role of NAD+ metabolism in aging and longevity has added a new dimension to the interest in sirtuin function. Antioxid. Redox Signal. 39, 1185-1208.


Assuntos
Sirtuínas , Humanos , Sirtuínas/metabolismo , NAD/metabolismo , Estresse Oxidativo , Envelhecimento/fisiologia , Inflamação
9.
Exp Neurol ; 368: 114481, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463612

RESUMO

Early-life adversity, like perinatal protein malnutrition, increases the vulnerability to develop long-term alterations in brain structures and function. This study aimed to determine whether perinatal protein malnutrition predisposes to premature aging in a murine model and to assess the cellular and molecular mechanisms involved. To this end, mouse dams were fed either with a normal (NP, casein 20%) or a low-protein diet (LP, casein 8%) during gestation and lactation. Female offspring were evaluated at 2, 7 and 12 months of age. Positron emission tomography analysis showed alterations in the hippocampal CA3 region and the accessory olfactory bulb of LP mice during aging. Protein malnutrition impaired spatial memory, coinciding with higher levels of reactive oxygen species in the hippocampus and sirt7 upregulation. Protein malnutrition also led to higher senescence-associated ß-galactosidase activity and p21 expression. LP-12-month-old mice showed a higher number of newborn neurons that did not complete the maturation process. The social-odor discrimination in LP mice was impaired along life. In the olfactory bulb of LP mice, the senescence marker p21 was upregulated, coinciding with a downregulation of Sirt2 and Sirt7. Also, LP-12-month-old mice showed a downregulation of catalase and glutathione peroxidase, and LP-2-month-old mice showed a higher number of newborn neurons in the subventricular zone, which then returned to normal values. Our results show that perinatal protein malnutrition causes long-term impairment in cognitive and olfactory skills through an accelerated senescence phenotype accompanied by an increase in oxidative stress and altered sirtuin expression in the hippocampus and olfactory bulb.


Assuntos
Senilidade Prematura , Desnutrição , Gravidez , Camundongos , Animais , Feminino , Memória Espacial , Senilidade Prematura/genética , Caseínas/metabolismo , Estresse Oxidativo , Transtornos da Memória/etiologia , Bulbo Olfatório/fisiologia , Desnutrição/complicações , Desnutrição/metabolismo
10.
Mol Immunol ; 160: 150-160, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437515

RESUMO

Global warming is changing the distribution of different pathogens around the globe, and humans are more susceptible to new or re-emerging infections. The human response to microbes is complex and involves different mechanisms of the immune system. Regulation of gene expression of immunity genes and of metabolism of immune cells are essential in this process. Both mechanisms could be regulated by protein lysine acetylation that will control chromatin structure affecting gene expression or key enzyme activity involved in cellular processes. Protein acetylation is crucial for the immunity and involves two families of enzymes: lysine acetyltransferases (KATs), which will promote protein acetylation, and lysine deacetylases (KDACs) that will reduce this modification. Lysine deacetylases are divided into Zinc-dependent or HDACs and NAD+ -dependent, or Sirtuins. These enzymes are in the nucleus, cytosol, and mitochondria of mammalian cells affecting different cellular pathways, such as metabolism, gene expression, DNA repair, cell proliferation, and apoptosis, opening the opportunity to explore these proteins as drug targets in different diseases, including cancer and neurodegenerative illness. Although widely explored in chronic diseases, very little is known about the role of Sirtuins during host response against microbes' infection. In this review we aim to explore the most recent literature evidencing a role for these enzymes during host responses to viruses, bacterial and protozoan infections, pointing out how these proteins can be manipulated by these pathogens to progress in the infection. Moreover, we will uncover the potential of host KDACs as therapeutic targets to prevent infections by activating effector immune functions.


Assuntos
Lisina , Sirtuínas , Animais , Humanos , Lisina/metabolismo , Sirtuínas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA