Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 200: 110975, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579690

RESUMO

The luminescent and dosimetric properties of the MgB4O7 phosphor co-doped with Tm and Dy ions (MgB4O7:Tm,Dy) obtained by the solution combustion technique were investigated. With the prepared material, sintered dosimeters in pellet form were made. The MgB4O7 dosimeters doped with Tm and Dy with 0.25 and 0.10 mol% respectively and sintered at 1223 K for 3 h showed a sensitivity almost 11 times greater than the sensitivity of the TLD-100 commercial dosimeter. The TL response as a function of the gamma dose showed linearity up to 50 Gy followed by a supralinearity region and, above 500 Gy, the saturation region of the electron traps is reached. The fading of the main TL peak was negligible in the first five days after irradiation reaching 13% after 60 days and the lower detection limit was 43 µGy. The kinetic parameters were determined using the deconvolution method revealing general and second order kinetics. The morphology, crystallography and photoluminescence of the prepared phosphor samples are also reported.

2.
Int J Phytoremediation ; 19(12): 1126-1133, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-28521531

RESUMO

New carbonaceous materials were obtained through solution combustion process of tamarind shell in the presence of urea and ammonium nitrate, and all of them were tested for Co removal. The effect of temperature (from 600 to 1000°C) and water volume on surface texture of carbonaceous material and its adsorptive capacity was evaluated. Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray powder diffraction, and Brunauer-Emmett-Teller (BET) model were used to characterize the obtained carbonaceous material before applying for the removal of cobalt. The point of zero charge was also determined. The results indicate that BET-specific surface areas ranged from 6.40 to 216.72 m2g-1 for the carbonaceous materials obtained at 600, 700, 800, 900, and 1000°C. The one obtained at 900°C (CombTSF900) was found to be the most effective adsorbent for the removal of Co(II) ions from aqueous solutions, with a maximum sorption capacity (Qmax) of 43.56 mg/g. Carbonaceous material obtained through the solution combustion process improves morphological characteristics of adsorbent in a short time, and could be used as an alternative method for the removal of cobalt.


Assuntos
Cobalto , Tamarindus , Poluentes Químicos da Água , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Purificação da Água , Difração de Raios X
3.
J Environ Manage ; 156: 121-7, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25841193

RESUMO

New carbonaceous materials were obtained using a fast aqueous solution combustion process from mixtures of exhausted coffee, ammonium nitrate (oxidizer) and urea (fuel) heated at 600, 700, 800 or 900 °C. The resulting powders were effective adsorbents for removing Co(II) and Cd(II) from aqueous solutions. Exhausted coffee was also calcined at different temperatures and compared. The products were characterized, and the obtained carbons had BET specific surface areas of 114.27-390.85 m(2)/g and pore diameters of 4.19 to 2.44 nm when the temperature was increased from 600 to 800 °C. Cobalt and cadmium adsorption by the carbonaceous materials was correlated with the maximum adsorption capacities and specific surface areas of the materials. The method reported here is advantageous because it only required 5 min of reaction to improve the textural properties of carbon obtained from exhausted coffee, which play an important role in the material's cobalt and cadmium adsorption capacities.


Assuntos
Cádmio/química , Carbono/isolamento & purificação , Cobalto/química , Café/química , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Oxirredução , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA