Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ecology ; 105(8): e4365, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38895926

RESUMO

Scavenging is a key process for the cycling of nutrients in ecosystems, yet it is still neglected in the ecological literature. Apart from the importance of specific groups of animals in scavenging, there have been few ecological studies that compare them. Furthermore, the ecological studies on scavenging have mainly focused on vertebrates despite the crucial importance of invertebrates in this process. Here, we performed a large-scale ant suppression and vertebrate exclusion experiment to quantify the relative contribution of ants, non-ant invertebrates and vertebrates in scavenging nitrogen-rich (insect carcasses) and carbon-rich (seeds) baits in two contrasting mountainous habitats in Brazil (grasslands and forests). Overall, bait removal was 23.2% higher in forests than in grasslands. Ants were the primary scavengers in grasslands, responsible for more than 57% of dead insect larvae and seed removal, while, in forests, non-ant invertebrates dominated, removing nearly 65% of all baits. Vertebrates had a minor role in scavenging dead insect larvae and seeds in both habitats, with <4% of removals. Furthermore, our results show that animal-based baits were more consumed in forests than seeds, and both resources were equally consumed in grasslands. Therefore, we demonstrate the superiority of invertebrates in this process, with a particular emphasis on the irreplaceable role of ants, especially in this grassland ecosystem. As such, we further advance our knowledge of a key ecosystem process, showing the relative importance of three major groups in scavenging and the differences in ecosystems functioning between two contrasting tropical habitats.


Assuntos
Formigas , Florestas , Pradaria , Invertebrados , Animais , Formigas/fisiologia , Invertebrados/fisiologia , Brasil , Comportamento Alimentar/fisiologia , Ecossistema , Insetos/fisiologia
2.
Neotrop Entomol ; 52(6): 1018-1026, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37782401

RESUMO

The quality and diversity of leaf litter are important variables in determining the availability of energy in detritus-based food webs. These factors can be represented by the stoichiometric proportion between carbon and multiple nutrients, and the mixture of litter from different taxonomic and/or functional origins. In aquatic ecosystems, factors that accelerate litter decomposition can influence the secondary productivity of planktonic microbiota, which act as a link between litter and higher trophic levels. This study aimed to analyze the influence of litter quality and diversity on the oviposition behavior of medically important mosquitoes. We hypothesized that both factors would have a positive effect on the attraction of female mosquitoes and would stimulate a greater amount of oviposition. To test this hypothesis, microcosms containing isolated leaf litter leachates from four plant species were used to manipulate gradients of litter quality, and microcosms with all leachates combined were used to test the effects of litter diversity. The results showed a positive effect of litter quality (p < 0.05) on mosquito oviposition rate, with lower C:P ratio litter species (high-quality litter) presenting higher oviposition rates than litter species with high C:P ratios (low-quality litter). However, contrary to our expectations, litter diversity had a negative effect (p = 0.002) on the magnitude of egg-laying by mosquitoes. Our results highlight the importance of litter quality and diversity for insect reproductive behavior. Our data shows that litter quality can serve as a crucial indicator of a suitable environment utilized by female mosquitoes for oviposition. This finding can enhance our ability to understand and develop effective methods for mitigating the reproduction of medically significant mosquitoes, whether by allowing us to predict, based on the composition of vegetation species, areas more prone to mosquito infestation, or by using high-quality litter in oviposition traps. Furthermore, maintaining vegetation diversity can help control mosquito reproduction.


Assuntos
Culicidae , Ecossistema , Feminino , Animais , Oviposição , Cadeia Alimentar , Folhas de Planta
3.
Sci Total Environ ; 895: 164990, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364830

RESUMO

Invasive species pose a major threat to forest biodiversity, particularly on islands such as the Galapágos. Here, invasive plants are threatening the remnants of the unique cloud forest and its iconic Darwin's finches. We posit that food web disturbances caused by invasive Rubus niveus (blackberry), have contributed to the rapid decline of the insectivourous green warbler finch (Certhidae olivacea). We compared the birds' dietary changes in long-term management, short-term management and unmanaged areas. We measured C:N ratios, and δ15N­nitrogen and δ13C­carbon values in both consumer tissues (bird-blood) and food sources (arthropods), as indicators of resource use change, and collected mass abundance, and arthropod diversity data. We characterised the birds' diets using isotope mixing models. The results revealed that finches in (blackberry-invaded) unmanaged areas foraged more on abundant, yet lower quality, arthropods present in the invaded understory. This suggests that blackberry encroachment leads to a decrease in food source quality with physiological consequences for green warbler finch chicks. Results also implied that blackberry control has a short-term impact on food source quantity, which led to a decrease in chick recruitment that we observed in our previous studies; despite this, in the long-term, these managed systems show signs of recovery within three years of restoration.


Assuntos
Tentilhões , Passeriformes , Animais , Florestas , Biodiversidade , Comportamento Alimentar , Equador
4.
Ecology ; 104(11): e4118, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37282712

RESUMO

Biogeochemical niche (BN) hypothesis aims to relate species/genotype elemental composition with its niche based on the fact that different elements are involved differentially in distinct plant functions. We here test the BN hypothesis through the analysis of the 10 foliar elemental concentrations and 20 functional-morphological of 60 tree species in a French Guiana tropical forest. We observed strong legacy (phylogenic + species) signals in the species-specific foliar elemental composition (elementome) and, for the first time, provide empirical evidence for a relationship between species-specific foliar elementome and functional traits. Our study thus supports the BN hypothesis and confirms the general niche segregation process through which the species-specific use of bio-elements drives the high levels of α-diversity in this tropical forest. We show that the simple analysis of foliar elementomes may be used to test for BNs of co-occurring species in highly diverse ecosystems, such as tropical rainforests. Although cause and effect mechanisms of leaf functional and morphological traits in species-specific use of bio-elements require confirmation, we posit the hypothesis that divergences in functional-morphological niches and species-specific biogeochemical use are likely to have co-evolved.


Assuntos
Ecossistema , Árvores , Floresta Úmida , Guiana Francesa , Clima Tropical , Folhas de Planta/química
5.
Ecol Lett ; 25(10): 2189-2202, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981221

RESUMO

In light of ongoing climate change, it is increasingly important to know how nutritional requirements of ectotherms are affected by changing temperatures. Here, we analyse the wide thermal response of phosphorus (P) requirements via elemental gross growth efficiencies of Carbon (C) and P, and the Threshold Elemental Ratios in different aquatic invertebrate ectotherms: the freshwater model species Daphnia magna, the marine copepod Acartia tonsa, the marine heterotrophic dinoflagellate Oxyrrhis marina, and larvae of two populations of the marine crab Carcinus maenas. We show that they all share a non-linear cubic thermal response of nutrient requirements. Phosphorus requirements decrease from low to intermediate temperatures, increase at higher temperatures and decrease again when temperature is excessive. This common thermal response of nutrient requirements is of great importance if we aim to understand or even predict how ectotherm communities will react to global warming and nutrient-driven eutrophication.


Assuntos
Mudança Climática , Fósforo , Animais , Carbono , Invertebrados , Temperatura
6.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502464

RESUMO

Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide synthase (eNOS) produces superoxide anion (O2-•) and contributes to the establishment of a pro-oxidant environment in melanoma. Although decreased tetrahydrobiopterin (BH4) bioavailability is associated with eNOS uncoupling in endothelial and human melanoma cells, in the present work we show that eNOS uncoupling in metastatic melanoma cells expressing the genes from de novo biopterin synthesis pathway Gch1, Pts, and Spr, and high BH4 concentration and BH4:BH2 ratio. Western blot analysis showed increased expression of Nos3, altering the stoichiometry balance between eNOS and BH4, contributing to NOS uncoupling. Both treatment with L-sepiapterin and eNOS downregulation induced increased nitric oxide (NO) and decreased O2• levels, triggering NOS coupling and reducing cell growth and resistance to anoikis and dacarbazine chemotherapy. Moreover, restoration of eNOS activity impaired tumor growth in vivo. Finally, NOS3 expression was found to be increased in human metastatic melanoma samples compared with the primary site. eNOS dysfunction may be an important mechanism supporting metastatic melanoma growth and hence a potential target for therapy.


Assuntos
Biopterinas/biossíntese , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Melanoma/enzimologia , Proteínas de Neoplasias/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Animais , Biopterinas/genética , Feminino , Humanos , Melanoma/genética , Melanoma/patologia , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Óxido Nítrico Sintase Tipo III/genética
7.
PeerJ ; 9: e11956, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447634

RESUMO

Montane cloud forests are fragile biodiversity hotspots. To attain their conservation, disentangling diversity patterns at all levels of ecosystem organization is mandatory. Biotic communities are regularly structured by environmental factors even at small spatial scales. However, studies at this scale have received less attention with respect to larger macroscale explorations, hampering the robust view of ecosystem functioning. In this sense, fungal small-scale processes remain poorly understood in montane cloud forests, despite their relevance. Herein, we analyzed soil fungal diversity and ecological patterns at the small-scale (within a 10 m triangular transect) in a pristine montane cloud forest of Mexico, using ITS rRNA gene amplicon Illumina sequencing and biogeochemical profiling. We detected a taxonomically and functionally diverse fungal community, dominated by few taxa and a large majority of rare species (81%). Undefined saprotrophs represented the most abundant trophic guild. Moreover, soil biogeochemical data showed an environmentally heterogeneous setting with patchy clustering, where enzymatic activities suggest distinctive small-scale soil patterns. Our results revealed that in this system, deterministic processes largely drive the assemblage of fungal communities at the small-scale, through multifactorial environmental filtering.

8.
Biochim Biophys Acta Gen Subj ; 1865(9): 129939, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082059

RESUMO

BACKGROUND: Mag-Fluo-4 is increasingly employed for studying Ca2+ signaling in skeletal muscle; however, the lack of information on the Ca2+-Mag-Fluo-4 reaction limits its wider usage. METHODS: Fluorescence and isothermal titration calorimetry (ITC) experiments were performed to determine the binding stoichiometry (n) and thermodynamics (enthalpy (ΔH) and entropy (ΔS) changes), as well as the in vitro and in situ Kd of the Ca2+-Mag-Fluo-4 reaction. Rate constants (kon, koff), fluorescence maximum (Fmax), minimum (Fmin), and the dye compartmentalization were also estimated. Experiments in cells used enzymatically dissociated flexor digitorum brevis fibres of C57BL6, adult mice, loaded at room temperature for 8 min, with 6 µM Mag-Fluo-4, AM, and permeabilized with saponin or ionomycin. All measurements were done at 20 °C. RESULTS: The in vitro fluorescence assays showed a binding stoichiometry of 0.5 for the Ca2+/Mag-Fluo-4 (n = 5) reaction. ITC results (n = 3) provided ΔH and ΔS values of 2.3 (0.7) kJ/mol and 97.8 (5.9) J/mol.K, respectively. The in situ Kd was 1.652 × 105µM2(n = 58 fibres, R2 = 0.99). With an Fmax of 150.9 (8.8) A.U. (n = 8), Fmin of 0.14 (0.1) A.U. (n = 10), and ΔF of Ca2+ transients of 8.4 (2.5) A.U. (n = 10), the sarcoplasmic [Ca2+]peak reached 22.5 (7.8) µM. Compartmentalized dye amounted to only 1.1 (0.7)% (n = 10). CONCLUSIONS: Two Mag-Fluo-4 molecules coalesce around one Ca2+ ion, in an entropy-driven, very low in situ affinity reaction, making it suitable to reliably track the kinetics of rapid muscle Ca2+ transients. GENERAL SIGNIFICANCE: Our results may be relevant to the quantitative study of Ca2+ kinetics in many other cell types.


Assuntos
Cálcio/metabolismo , Corantes Fluorescentes/metabolismo , Fura-2/análogos & derivados , Músculo Esquelético/metabolismo , Animais , Corantes Fluorescentes/química , Fura-2/química , Fura-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/química , Termodinâmica
9.
Anal Chim Acta ; 1157: 338398, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33832588

RESUMO

The DPPH method has been reported with misconceptions in a large number of studies, thus precluding comparison of results. Attention is drawn to a common mistake in the unit used to express the IC50 of ascorbic acid and other antioxidant substances. Concentration of the antioxidant is widely misused with a total disregard for the DPPH• concentration, while the molar ratio of antioxidant/DPPH• would be the correct choice. Data from 26 studies with widely varying IC50 values were renormalized according to reaction stoichiometry, resulting in values which are more coherent and closer to the ideal one of 0.25 for at least 15 of them. In addition, the model which is currently being used to calculate the DPPH• concentration can lead to an overestimation of around 7%, as it does not take into account the small contribution of the reaction product. In view of that, we present a mathematical model to correct the overestimation of the DPPH• concentration.

10.
Saudi J Biol Sci ; 27(12): 3711-3719, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304182

RESUMO

Beneficial effects of silicon (Si) on growth have been observed in some plant species, reportedly due to stoichiometric changes of C, N, and P. However, little is known about the effects on the stoichiometric relationships between C, N, and P when silicon is supplied via different modes in sorghum and sunflower plants under salt stress conditions. Therefore, the current study was performed to investigate the impact of differing modes of Si supply on shoot biomass production and C:N:P stoichiometry in sorghum and sunflower plants under salt stress. Two experiments were performed in a glass greenhouse using the strong Si-accumulator plant sorghum, as well as the intermediate type Si-accumulator sunflower, both of which were grown in pots filled with washed sand. Plant species were cultivated for 30 days in the absence or presence of salt stress (0 or 100 mM) and supplemented with one of four Si treatments: control plants (without Si), 28.6 mmol Si L-1 via foliar application, 2.0 mmol Si L-1 via nutrient solution, and combined application of foliar and nutrient solution, each group with five replications. The results revealed that supplied Si modified the C, N, and P concentrations, thereby enhancing the C:N:P stoichiometry and shoot dry matter of sorghum and sunflower plants under salt stress. Both application of Si via nutrient solution, as well as combined application via foliar and nutrient solution, increased the C:N ratio in both plant species under salt stress, but in sorghum plants decreased the C:P and N:P ratios and increased the shoot biomass production by 39%, while in sunflower plants increased the C:P and N:P ratios and increased the shoot biomass production by 24%. Our findings suggest that salt stress alleviation by Si impacts C:N:P stoichiometric relationships in a variable manner depending on the ability of the species to accumulate Si, as well as the route of Si administration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA