Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17024, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043711

RESUMO

Cetaceans represent a natural experiment within the tree of life in which a lineage changed from terrestrial to aquatic habitats. This shift involved phenotypic modifications, representing an opportunity to explore the genetic bases of phenotypic diversity. Among the different molecular systems that maintain cellular homeostasis, ion channels are crucial for the proper physiological functioning of all living species. This study aims to explore the evolution of ion channels during the evolutionary history of cetaceans. To do so, we created a bioinformatic pipeline to annotate the repertoire of ion channels in the genome of the species included in our sampling. Our main results show that cetaceans have, on average, fewer protein-coding genes and a higher percentage of annotated ion channels than non-cetacean mammals. Signals of positive selection were detected in ion channels related to the heart, locomotion, visual and neurological phenotypes. Interestingly, we predict that the NaV1.5 ion channel of most toothed whales (odontocetes) is sensitive to tetrodotoxin, similar to NaV1.7, given the presence of tyrosine instead of cysteine, in a specific position of the ion channel. Finally, the gene turnover rate of the cetacean crown group is more than three times faster than that of non-cetacean mammals.


Assuntos
Cetáceos , Evolução Molecular , Canais Iônicos , Animais , Cetáceos/genética , Cetáceos/fisiologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Filogenia , Biologia Computacional/métodos , Genoma
2.
Chemosphere ; 242: 125211, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31896201

RESUMO

While tetrodotoxin (TTX) is commonly found in pufferfish tissues, it is unclear if bacterial symbionts isolated from pufferfish tissues can produce TTX. In this investigation, UPLC qTOF-MS/MS analysis of tissue extracts obtained from Sphoeroides spengleri and Canthigaster figuereidoi identified TTX in their composition, indicating their consumption is unsafe. UPLC qTOF-MS/MS analysis coupled with Molecular Networking indicated new TTX analogs (methyl-TTX, TTX-acetate, hydroxypropyl-TTX and glycerol-TTX). Bacterial extracts from sixteen strains revealed a compound with a [M+H]+ ion at m/z 320.1088, identical to TTX. However, TTX itself was not detected in these cultures by UPLC-MS/MS. Neurotoxicity of Vibrio A665 purified fraction 2 (with precursor [M+H]+ ion at m/z 320.1088) was significant in human neural stem cells (hNSCs), but the Nav blockage activity was not confirmed by the veratridine/ouabain essays, indicating a possible difference in the mechanism of action between the bacterium A665 purified fraction 2 and TTX. Vibrios symbionts of pufferfish point out involving in the production of TTX precursors.


Assuntos
Microbiota , Tetraodontiformes/fisiologia , Tetrodotoxina/metabolismo , Animais , Brasil , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem , Tetraodontiformes/microbiologia , Vibrio
3.
Mar Drugs ; 15(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027912

RESUMO

Guanidinium toxins, such as saxitoxin (STX), tetrodotoxin (TTX) and their analogs, are naturally occurring alkaloids with divergent evolutionary origins and biogeographical distribution, but which share the common chemical feature of guanidinium moieties. These guanidinium groups confer high biological activity with high affinity and ion flux blockage capacity for voltage-gated sodium channels (NaV). Members of the STX group, known collectively as paralytic shellfish toxins (PSTs), are produced among three genera of marine dinoflagellates and about a dozen genera of primarily freshwater or brackish water cyanobacteria. In contrast, toxins of the TTX group occur mainly in macrozoa, particularly among puffer fish, several species of marine invertebrates and a few terrestrial amphibians. In the case of TTX and analogs, most evidence suggests that symbiotic bacteria are the origin of the toxins, although endogenous biosynthesis independent from bacteria has not been excluded. The evolutionary origin of the biosynthetic genes for STX and analogs in dinoflagellates and cyanobacteria remains elusive. These highly potent molecules have been the subject of intensive research since the latter half of the past century; first to study the mode of action of their toxigenicity, and later as tools to characterize the role and structure of NaV channels, and finally as therapeutics. Their pharmacological activities have provided encouragement for their use as therapeutants for ion channel-related pathologies, such as pain control. The functional role in aquatic and terrestrial ecosystems for both groups of toxins is unproven, although plausible mechanisms of ion channel regulation and chemical defense are often invoked. Molecular approaches and the development of improved detection methods will yield deeper understanding of their physiological and ecological roles. This knowledge will facilitate their further biotechnological exploitation and point the way towards development of pharmaceuticals and therapeutic applications.


Assuntos
Guanidina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Animais , Cianobactérias/metabolismo , Dinoflagellida/metabolismo , Guanidina/química , Humanos , Saxitoxina/química , Saxitoxina/farmacologia , Bloqueadores dos Canais de Sódio/química , Tetrodotoxina/química , Tetrodotoxina/farmacologia , Toxinas Biológicas/química , Toxinas Biológicas/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
4.
Neurochem Int ; 63(6): 576-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24044896

RESUMO

Etomidate is an intravenous anesthetic used during anesthesia induction. This agent induces spontaneous movements, especially myoclonus after its administration suggesting a putative primary effect at the central nervous system or the periphery. Therefore, the aim of this study was to investigate the presynaptic and postsynaptic effects of etomidate at the mouse neuromuscular junction (NMJ). Diaphragm nerve muscle preparations were isolated and stained with the styryl dye FM1-43, a fluorescent tool that tracks synaptic vesicles exo-endocytosis that are key steps for neurotransmission. We observed that etomidate induced synaptic vesicle exocytosis in a dose-dependent fashion, an effect that was independent of voltage-gated Na(+) channels. By contrast, etomidate-evoked exocytosis was dependent on extracellular Ca(2+) because its effect was abolished in Ca(2+)-free medium and also inhibited by omega-Agatoxin IVA (30 and 200nM) suggesting the participation of P/Q-subtype Ca(2+) channels. Interestingly, even though etomidate induced synaptic vesicle exocytosis, we did not observe any significant difference in the frequency and amplitude of miniature end-plate potentials (MEPPs) in the presence of the anesthetic. We therefore investigated whether etomidate could act on nicotinic acetylcholine receptors labeled with α-bungarotoxin-Alexa 594 and we observed less fluorescence in preparations exposed to the anesthetic. In conclusion, our results suggest that etomidate exerts a presynaptic effect at the NMJ inducing synaptic vesicle exocytosis, likely through the activation of P-subtype voltage gated Ca(2+) channels without interfering with MEPPs frequency. The present data contribute to a better understanding about the effect of etomidate at the neuromuscular synapse and may help to explain some clinical effects of this agent.


Assuntos
Etomidato/farmacologia , Potenciais Evocados/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Placa Motora/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos , Animais , Canais de Cálcio Tipo P/efeitos dos fármacos , Canais de Cálcio Tipo P/metabolismo , Canais de Cálcio Tipo Q/efeitos dos fármacos , Canais de Cálcio Tipo Q/metabolismo , Diafragma/efeitos dos fármacos , Diafragma/inervação , Relação Dose-Resposta a Droga , Feminino , Camundongos , Receptores Nicotínicos/efeitos dos fármacos
5.
Genet Mol Biol ; 34(2): 323-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21734837

RESUMO

Tetrodotoxin (TTX) is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na(v)). The skeletal muscle Na(v) (Na(v)1.4) channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na(v)1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na(v)1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na(v)1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement.

6.
Genet. mol. biol ; 34(2): 323-328, 2011. ilus
Artigo em Inglês | LILACS | ID: lil-587767

RESUMO

Tetrodotoxin (TTX) is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na v). The skeletal muscle Na v (Na v1.4) channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na v1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na v1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na v1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement.

7.
Artigo em Inglês | VETINDEX | ID: vti-442927

RESUMO

In Brazil, where puffer fish are considered poisonous, there are few documented cases on human consumption and consequent poisoning. In this study, toxicity of two puffer fish species from the Brazilian coast was examined. Specimens of Sphoeroides spengleri and Lagocephalus laevigatus were caught in São Sebastião Channel (North coast of São Paulo State, Brazil) between January 1996 and May 1997. Acidic ethanol extracts from muscle and skin plus viscera were tested for mice acute toxicity using the standard method of Kawabata. Polar extracts of S. spengleri showed high toxicity up to 946 MU/g. Extracts from L. laevigatus showed very low levels of toxicity, never exceeding 1.7 MU/g. All extracts from both species blocked amielinic nerve fiber evoked impulses of crustacean legs; this effect reverted on washing similar to the standard tetrodotoxin TTX. The aqueous extract solutions were partially purified using an ionic exchange column (Amberlit GC-50) followed by treatment with activated charcoal (Norit-A). The presence of TTX and their analogs in the semi-purified extracts were confirmed by HPLC and mass spectrometry (MALDI-TOF).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA