Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(23)2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067143

RESUMO

Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5ß1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Adesão Celular , Células HeLa , Qualidade de Vida , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Integrina alfa5beta1
2.
Mol Biol Rep ; 50(10): 8431-8444, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37624559

RESUMO

BACKGROUND: Bell pepper (Capsicum annuum L.) is one of the most economically and nutritionally important vegetables worldwide. However, its production can be affected by various abiotic stresses, such as low temperature. This causes various biochemical, morphological and molecular changes affecting membrane lipid composition, photosynthetic pigments, accumulation of free sugars and proline, secondary metabolism, as well as a change in gene expression. However, the mechanism of molecular response to this type of stress has not yet been elucidated. METHODS AND RESULTS: To further investigate the response mechanism to this abiotic stress, we performed an RNA-Seq transcriptomic analysis to obtain the transcriptomic profile of Capsicum annuum exposed to low temperature stress, where libraries were constructed from reads of control and low temperature stress samples, varying on average per treatment from 22,952,190.5-27,305,327 paired reads ranging in size from 30 to 150 bp. The number of differentially expressed genes (DEGs) for each treatment was 388, 417 and 664 at T-17 h, T-22 h and T-41 h, respectively, identifying 58 up-regulated genes and 169 down-regulated genes shared among the three exposure times. Likewise, 23 DEGs encoding TFs were identified at T-17 h, 30 DEGs at T-22 h and 47 DEGs at T-42 h, respectively. GO analysis revealed that DEGs were involved in catalytic activity, response to temperature stimulus, oxidoreductase activity, stress response, phosphate ion transport and response to abscisic acid. KEGG pathway analysis identified that DEGs were related to flavonoid biosynthesis, alkaloid biosynthesis and plant circadian rhythm pathways in the case of up-regulated genes, while in the case of down-regulated genes, they pertained to MAPK signaling and plant hormone signal transduction pathways, present at all the three time points of low temperature exposure. Validation of the transcriptomic method was performed by evaluation of five DEGs by quantitative polymerase chain reaction (q-PCR). CONCLUSIONS: The data obtained in the present study provide new insights into the transcriptome profiles of Capsicum annuum stem in response to low temperature stress. The data generated may be useful for the identification of key candidate genes and molecular mechanisms involved in response to this type of stress.


Assuntos
Capsicum , Transcriptoma , Transcriptoma/genética , Capsicum/genética , Temperatura , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
Gene ; 883: 147668, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37500024

RESUMO

Castor bean (Ricinus communis L.) can withstand long periods of water deficit and high temperatures, and therefore has been recognized as a drought-resistant plant species, allowing the study of gene networks involved in drought response and tolerance. The identification of genes networks related to drought response in this plant may yield important information in the characterization of molecular mechanisms correlating changes in the gene expression with the physiological adaptation processes. In this context, gene families related to abscisic acid (ABA) signaling play a crucial role in developmental and environmental adaptation processes of plants to drought stress. However, the families that function as the core components of ABA signaling, as well as genes networks related to drought response, are not well understood in castor bean. In this study 7 RcPYL, 63 RcPP2C, and 6 RcSnRK2 genes were identified in castor bean genome, which was further supported by chromosomal distribution, gene structure, evolutionary relationships, and conserved motif analyses. The castor bean general expression profile was investigated by RNAseq in root and leaf tissues in response to drought stress. These analyses allowed the identification of genes differentially expressed, including genes from the ABA signaling core, genes related to photosynthesis, cell wall, energy transduction, antioxidant response, and transcription factors. These analyses provide new insights into the core components of ABA signaling in castor bean, allow the identification of several molecular responses associated with the high physiological adaptation of castor bean to drought stress, and contribute to the identification of candidate genes for genetic improvement.


Assuntos
Ricinus communis , Ricinus communis/genética , Ricinus communis/metabolismo , Ricinus/genética , Ricinus/metabolismo , Redes Reguladoras de Genes , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
4.
Biomed Pharmacother ; 165: 115189, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37481932

RESUMO

Acinetobacter baumannii is a gram-negative opportunistic bacterium that has become a major public health concern and a substantial medical challenge due to its ability to acquire multidrug resistance (MDR), extended-drug resistance, or pan-drug resistance. In this study, we evaluated the antibacterial activity of thymol and carvacrol alone or in combination against clinical isolates of MDR A. baumannii. Additionally, we used RNA-sequency to perform a comparative transcriptomic analysis of the effects of carvacrol and thymol on the Acb35 strain under different treatment conditions. Our results demonstrated that thymol and carvacrol alone, effectively inhibited the bacterial growth of MDR A. baumannii isolates, with a minimum inhibitory concentration (MIC) lower than 500 µg/mL. Furthermore, the combination of thymol and carvacrol exhibited either synergistic (FICI ≤ 0.5) or additive effects (0.5 < FICI ≤ 4), enhancing their antibacterial activity. Importantly, these compounds were found to be non-cytotoxic to Vero cells and did not cause hemolysis in erythrocytes at concentrations that effectively inhibited bacterial growth. Transcriptomic analysis revealed the down-regulation of mRNA associated with ribosomal subunit assemblies under all experimental conditions tested. However, the up-regulation of specific genes encoding stress response proteins and transcriptional regulators varied depending on the experimental condition, particularly in response to the treatment with carvacrol and thymol in combination. Based on our findings, thymol and carvacrol demonstrate promising potential as chemotherapeutic agents for controlling MDR A. baumannii infections. These compounds exhibit strong antibacterial activity, particularly in combination and lower cytotoxicity towards mammalian cells. The observed effects on gene expression provide insights into the underlying mechanisms of action, highlighting the regulation of stress response pathways.


Assuntos
Acinetobacter baumannii , Timol , Animais , Chlorocebus aethiops , Timol/farmacologia , Acinetobacter baumannii/genética , Transcriptoma , Células Vero , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla/genética , Mamíferos
5.
Microorganisms ; 11(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36985226

RESUMO

Individuals infected with Leishmania (L.) chagasi may present different asymptomatic and symptomatic stages of infection, which vary in the clinical-immunological profiles that can be classified as asymptomatic infection (AI), subclinical resistant infection (SRI), indeterminate initial infection (III), subclinical oligosymptomatic infection (SOI), and symptomatic infection (SI) (=American visceral leishmaniasis, AVL). However, little is known about the molecular differences between individuals having each profile. Here, we performed whole-blood transcriptomic analyses of 56 infected individuals from Pará State (Brazilian Amazon), covering all five profiles. We then identified the gene signatures of each profile by comparing their transcriptome with those of 11 healthy individuals from the same area. Symptomatic individuals with SI (=AVL) and SOI profiles showed higher transcriptome perturbation when compared to those asymptomatic III, AI and SRI profiles, suggesting that disease severity may be associated with greater transcriptomic changes. Although the expression of many genes was altered on each profile, very few genes were shared among the profiles. This indicated that each profile has a unique gene signature. The innate immune system pathway was strongly activated only in asymptomatic AI and SRI profiles, suggesting the control of infection. In turn, pathways such as MHC Class II antigen presentation and NF-kB activation in B cells seemed to be specifically induced in symptomatic SI (=AVL) and SOI profiles. Moreover, cellular response to starvation was down-regulated in those symptomatic profiles. Overall, this study revealed five distinct transcriptional patterns associated to the clinical-immunological (symptomatic and asymptomatic) profiles of human L. (L.) chagasi-infection in the Brazilian Amazon.

6.
Appl Microbiol Biotechnol ; 107(4): 1421-1438, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36651929

RESUMO

Kluyveromyces marxianus is a non-conventional yeast with outstanding physiological characteristics and a high potential for lignocellulosic ethanol production. However, achieving high ethanol productivity requires overcoming several biotechnological challenges due to the cellular inhibition caused by the inhibitors present in the medium. In this work, K. marxianus SLP1 was adapted to increase its tolerance to a mix of inhibitory compounds using the adaptive laboratory evolution strategy to study the adaptation and stress response mechanisms used by this non-Saccharomyces yeast. The fermentative and physiological parameters demonstrated that the adapted K. marxianus P8 had a better response against the synergistic effects of multiple inhibitors because it reduced the lag phase from 12 to 4 h, increasing the biomass by 40% and improving the volumetric ethanol productivity 16-fold than the parental K. marxianus SLP1. To reveal the effect of adaptation process in P8, transcriptome analysis was carried out; the result showed that the basal gene expression in P8 changed, suggesting the biological capability of K. marxianus to activate the adaptative prediction mechanism. Similarly, we carried out physiologic and transcriptome analyses to reveal the mechanisms involved in the stress response triggered by furfural, the most potent inhibitor in K. marxianus. Stress response studies demonstrated that P8 had a better physiologic response than SLP1, since key genes related to furfural transformation (ALD4 and ALD6) and stress response (STL1) were upregulated. Our study demonstrates the rapid adaptability of K. marxianus to stressful environments, making this yeast a promising candidate to produce lignocellulosic ethanol. KEY POINTS: • K. marxianus was adapted to increase its tolerance to a mix of inhibitory compounds • The basal gene expression of K. marxianus changed after the adaptation process • Adapted K. marxianus showed a better physiological response to stress by inhibitors • Transcriptome analyses revealed key genes involved in the stress response.


Assuntos
Furaldeído , Kluyveromyces , Furaldeído/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Perfilação da Expressão Gênica , Fermentação , Etanol/metabolismo
7.
Toxicon ; 223: 107006, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36572114

RESUMO

The genus Odontomachus is widely distributed in neotropical areas throughout Central and South America. It is a stinging ant that subdues its prey (insects) by injecting them a cocktail of toxic molecules (venom). Ant venoms are generally composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Odontomachus chelifer is an ant that inhabits neotropical regions from Mexico to Argentina. Unlike the venom of other animals such as scorpions, spiders and snakes, this ant venom has seldom been analyzed comprehensively, and their compositions are not yet completely known. In the present study, we performed a partial investigation of enzymatic and functional activities of O. chelifer ant venom, and we provide a global insight on the transcripts expressed in the venom gland to better understand their properties. The crude venom showed phospholipase A2 and antiparasitic activities. RNA sequencing (Illumina platform) of the venom gland of O. chelifer generated 61, 422, 898 reads and de novo assembly Trinity generated 50,220 contigs. BUSCO analysis against Arthropoda_db10 showed that 92.89% of the BUSCO groups have complete gene representation (single-copy or duplicated), while 4.05% are only partially recovered, and 3.06% are missing. The 30 most expressed genes in O. chelifer venom gland transcriptome included important transcripts involved in venom function such as U-poneritoxin (01)-Om1a-like (pilosulin), chitinase 2, venom allergen 3, chymotrypsin 1 and 2 and glutathione S-transferase. Analysis of the molecular function revealed that the largest number of transcripts were related to catalytic activity, including phospholipases. These data emphasize the potential of O. chelifer venom for prospection of molecules with biotechnological application.


Assuntos
Venenos de Formiga , Formigas , Animais , Transcriptoma , Formigas/genética , Venenos de Formiga/genética , Venenos de Formiga/química , Perfilação da Expressão Gênica , Peptídeos/análise , Peçonhas/metabolismo , Alérgenos
8.
Oral Dis ; 29(7): 2658-2666, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35796645

RESUMO

OBJECTIVE: Oral squamous cell carcinoma (OSCC) is one of the most common neoplasms worldwide. The current study aimed to identify potential biomarkers associated with OSCC survival. MATERIALS AND METHODS: Differentially expressed genes (DEGs) in atypical OSCC cases were identified using two public datasets: The Cancer Genome Atlas and the Gene Expression Omnibus database. Receiver operating characteristic (ROC) analysis was performed to identify the cutoff, and the candidate DEGs related to survival. Kaplan-Meier and Cox regression analysis using the categorized genes were employed to identify genes that impact the overall survival in OSCC. RESULTS: A total of 263 OSCC samples and 105 healthy tissues were used to identify 295 upregulated and 131 downregulated genes expressed only in non-smokers. ROC analyses identified 25 candidate genes associated with death. Survival analyses demonstrated that the following DEGs, namely CSTA, FGFR2, MMP19, OLR1, PCSK1, RAMP2, and CGB5, are potential OSCC prognostic factors. CONCLUSION: We found that CSTA, FGFR2, MMP19, OLR1, PCSK1, RAMP2, and CGB5 are associated with a low survival rate in OSCC. However, further studies are needed to validate our findings and facilitate the development of these factors as potential biomarkers for OSCC survival.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Transcriptoma , Neoplasias Bucais/metabolismo , Regulação Neoplásica da Expressão Gênica , Análise de Sobrevida , Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/genética , Prognóstico
9.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235027

RESUMO

Due to the lack of chemotherapeutic drugs that selectively affect cervical cancer cells, natural sources such as snake venom are currently being investigated for molecules with antitumor potential. Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, induced cell death in a cervical cancer cell line-Ca Ski-related to dysfunction in the ability to resolve endoplasmic reticulum stress, evidenced by sub-expression of genes such as PERK, ERO1 PDIs, HSP70, and CHOP. Western blot analysis validated the last two genes' sub-expression at the protein level. In addition, Pllans-II presented a dose-dependent cytotoxic effect on cancer cells and an insignificant effect on healthy endothelial cells (HUVEC). Additionally, Pllans-II inhibited cancer cells' adhesion and migration capacity, induced cell cycle arrest in the G2/M phase, and induced apoptosis stimulated possibly by the extrinsic route. These results demonstrate for the first time that Pllans-II has an antitumor effect on a squamous epithelial cervical cancer cell line and represents a possible biotechnological tool for designing a prominent antitumor agent.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Neoplasias da Mama , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Células Endoteliais , Feminino , Humanos , Fosfolipases A2/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
10.
BMC Genomics ; 23(1): 188, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255809

RESUMO

BACKGROUND: The repulsive guidance molecule a (RGMa) is a GPI-anchor axon guidance molecule first found to play important roles during neuronal development. RGMa expression patterns and signaling pathways via Neogenin and/or as BMP coreceptors indicated that this axon guidance molecule could also be working in other processes and diseases, including during myogenesis. Previous works from our research group have consistently shown that RGMa is expressed in skeletal muscle cells and that its overexpression induces both nuclei accretion and hypertrophy in muscle cell lineages. However, the cellular components and molecular mechanisms induced by RGMa during the differentiation of skeletal muscle cells are poorly understood. In this work, the global transcription expression profile of RGMa-treated C2C12 myoblasts during the differentiation stage, obtained by RNA-seq, were reported. RESULTS: RGMa treatment could modulate the expression pattern of 2,195 transcripts in C2C12 skeletal muscle, with 943 upregulated and 1,252 downregulated. Among them, RGMa interfered with the expression of several RNA types, including categories related to the regulation of RNA splicing and degradation. The data also suggested that nuclei accretion induced by RGMa could be due to their capacity to induce the expression of transcripts related to 'adherens junsctions' and 'extracellular-cell adhesion', while RGMa effects on muscle hypertrophy might be due to (i) the activation of the mTOR-Akt independent axis and (ii) the regulation of the expression of transcripts related to atrophy. Finally, RGMa induced the expression of transcripts that encode skeletal muscle structural proteins, especially from sarcolemma and also those associated with striated muscle cell differentiation. CONCLUSIONS: These results provide comprehensive knowledge of skeletal muscle transcript changes and pathways in response to RGMa.


Assuntos
Proteínas do Tecido Nervoso , Transcriptoma , Proteínas Ligadas por GPI , Humanos , Hipertrofia , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA