Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 469
Filtrar
1.
Plant Dis ; 108(7): 2206-2213, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38549278

RESUMO

Wheat head blast is a major disease of wheat in the Brazilian Cerrado. Empirical models for predicting epidemics were developed using data from field trials conducted in Patos de Minas (2013 to 2019) and trials conducted across 10 other sites (2012 to 2020) in Brazil, resulting in 143 epidemics, with each being classified as either outbreak (≥20% head blast incidence) or nonoutbreak. Daily weather variables were collected from the National Aeronautics and Space Administration (NASA) Prediction of Worldwide Energy Resources (POWER) website and summarized for each epidemic. Wheat heading date (WHD) served to define four time windows, with each comprising two 7-day intervals (before and after WHD), which combined with weather-based variables resulted in 36 predictors (nine weather variables × four windows). Logistic regression models were fitted to binary data, with variable selection using least absolute shrinkage and selection operator (LASSO) and sequentially best subset analyses. The models were validated using the leave-one-out cross-validation (LOOCV) technique, and their statistical performance was compared. One model was selected, implemented in a 24-year series, and assessed by experts and literature. Models with two to five predictors showed accuracies between 0.80 and 0.85, sensitivities from 0.80 to 0.91, specificities from 0.72 to 0.86, and area under the curve (AUC) from 0.89 to 0.91. The accuracy of LOOCV ranged from 0.76 to 0.81. The model applied to a historical series included temperature and relative humidity in preheading date, as well as postheading precipitation. The model accurately predicted the occurrence of outbreaks, aligning closely with real-world observations, specifically tailored for locations with tropical and subtropical climates.


Assuntos
Doenças das Plantas , Triticum , Tempo (Meteorologia) , Doenças das Plantas/estatística & dados numéricos , Modelos Logísticos , Brasil/epidemiologia , Epidemias , Puccinia
2.
Phytopathology ; 114(1): 226-240, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37399001

RESUMO

Wheat blast, caused by Pyricularia oryzae Triticum (PoT), is an emerging threat to global wheat production. The current understanding of the population biology of the pathogen and epidemiology of the disease has been based on phylogenomic studies that compared the wheat blast pathogen with isolates collected from grasses that were invasive to Brazilian wheat fields. In this study, we performed a comprehensive sampling of blast lesions in wheat crops and endemic grasses found in and away from wheat fields in Minas Gerais. A total of 1,368 diseased samples were collected (976 leaves of wheat and grasses and 392 wheat heads), which yielded a working collection of 564 Pyricularia isolates. We show that, contrary to earlier implications, PoT was rarely found on endemic grasses, and, conversely, members of grass-adapted lineages were rarely found on wheat. Instead, most lineages were host-specialized, with constituent isolates usually grouping according to their host of origin. With regard to the dominant role proposed for signalgrass in wheat blast epidemiology, we found only one PoT member in 67 isolates collected from signalgrass grown away from wheat fields and only three members of Urochloa-adapted lineages among hundreds of isolates from wheat. Cross-inoculation assays on wheat and a signalgrass used in pastures (U. brizantha) suggested that the limited cross-infection observed in the field may be due to innate compatibility differences. Whether or not the observed level of cross-infection would be sufficient to provide an inoculum reservoir, or serve as a bridge between wheat growing regions, is questionable and, therefore, deserves further investigation.


Assuntos
Ascomicetos , Magnaporthe , Triticum , Poaceae , Brasil , Doenças das Plantas
3.
Braz. j. biol ; 84: e254445, 2024. tab, graf, mapas
Artigo em Inglês | VETINDEX | ID: biblio-1374659

RESUMO

Rodents can cause significant damage to wheat-groundnut crops in developing countries, as well as to stored produce and infrastructure, affecting food security and income of small-holder farmers. Wheat (Triticum aestivum) and groundnuts (Arachis hypogea) are important cash crops for local farmers in Pakistan. Field experiments were performed to assess the extent of rodent damage to wheat-groundnut crops throughout their growth stages (i.e, germination, flowering/peg formation and maturity) in the agro-ecological zones of Pothwar Plateau, Pakistan. We used a quadrat method to record the number of damaged crop plants. On the basis of the trapping data four rodent species were captured from wheat-groundnut cropping systems which were responsible for causing damage, i.e., lesser bandicoot rat (Bandicota bengalensis) was the main species, followed by the short-tailed mole rat (Nesokia indica), the Indian gerbil (Tatera indica) and the bush rat (Golunda ellioti). In both crops, the maximum damage was recorded at crop maturity (10.7 and 14.4%, respectively). The lowest reported damage to wheat and groundnuts was at the germination stage (3.5% and 6.0%, respectively). The lower damage reported at germination could be due to availability of non-crop vegetation at field borders that may be a potential factor influencing damage. Our findings clearly show the considerable amount of damage caused by rodents to wheat-groundnut at maturity across all the agro-ecological zones of Pothwar and indicated that the small mammal composition was more related to maturity stage/season of crops, when the availability of food and climatic condition were favorable and having security under crop shelter. More detailed studies are needed to fully understand the population and breeding ecology of the relevant rodent pest species in relation to damage patterns to optimize management beyond individual structural measures.


Os roedores podem causar danos significativos às culturas de trigo e amendoim nos países em desenvolvimento, bem como aos produtos armazenados e infraestrutura, afetando a segurança alimentar e a renda dos pequenos agricultores. O trigo (Triticum aestivum) e o amendoim (Arachis hypogea) são culturas comerciais importantes para os agricultores locais no Paquistão. Experimentos de campo foram realizados para avaliar a extensão dos danos de roedores às culturas de trigo e amendoim ao longo de seus estágios de crescimento (ou seja, germinação, floração/formação e maturidade) nas zonas agroecológicas de Pothwar Plateau, Paquistão. Usamos um método de quadrat para registrar o número de plantas de cultura danificadas. Com base nos dados de armadilhagem foram capturadas quatro espécies de roedores de sistemas de cultivo de trigo-amendoim que foram responsáveis ​​por causar danos, ou seja, o rato-bandico-pequeno (Bandicota bengalensis) foi a espécie principal, seguido pelo rato-toupeira-de-cauda-curta (Nesokia indica), o gerbilo-da-índia (Tatera indica) e o rato-do-mato (Golunda ellioti). Em ambas as culturas, o dano máximo foi registrado na maturidade da cultura (10,7 e 14,4%, respectivamente). O menor dano relatado ao trigo e ao amendoim foi no estágio de germinação (3,5% e 6,0%, respectivamente). O menor dano relatado na germinação pode ser devido à disponibilidade de vegetação não cultivada nas bordas do campo, que pode ser um fator potencial que influencia o dano. Nossos resultados mostraram claramente a quantidade considerável de danos causados ​​por roedores ao trigo-amendoim na maturidade em todas as zonas agroecológicas de Pothwar e indicaram que a composição de pequenos mamíferos estava mais relacionada ao estágio de maturidade/estação das culturas quando a disponibilidade de alimentos e as condições climáticas eram favoráveis ​​e com segurança sob abrigo de cultivo. Estudos mais detalhados são necessários para entender completamente a ecologia populacional e reprodutiva das espécies de pragas de roedores relevantes em relação aos padrões de danos para otimizar o manejo, além das medidas estruturais individuais.


Assuntos
Animais , Arachis , Roedores , Triticum , Pragas da Agricultura
4.
Plants (Basel) ; 12(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896034

RESUMO

Selecting drought-tolerant and more water-efficient wheat genotypes is a research priority, specifically in regions with irregular rainfall or areas where climate change is expected to result in reduced water availability. The objective of this work was to use high-throughput measurements with morphophysiological traits to characterize wheat genotypes in relation to water stress. Field experiments were conducted from May to September 2018 and 2019, using a sprinkler bar irrigation system to control water availability to eighteen wheat genotypes: BRS 254; BRS 264; CPAC 01019; CPAC 01047; CPAC 07258; CPAC 08318; CPAC 9110; BRS 394 (irrigated biotypes), and Aliança; BR 18_Terena; BRS 404; MGS Brilhante; PF 020037; PF 020062; PF 120337; PF 100368; PF 080492; and TBIO Sintonia (rainfed biotypes). The water regimes varied from 22 to 100% of the crop evapotranspiration replacement. Water stress negatively affected gas exchange, vegetation indices, and grain yield. High throughput variables TCARI, NDVI, OSAVI, SAVI, PRI, NDRE, and GNDVI had higher yield and morphophysiological measurement correlations. The drought resistance index indicated that genotypes Aliança, BRS 254, BRS 404, CPAC 01019, PF 020062, and PF 080492 were more drought tolerant.

5.
Plants (Basel) ; 12(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571021

RESUMO

This research elucidates the dynamic expression of expansin genes during the wheat grain (Triticum aestivum L.) development process using comprehensive meta-analysis and experimental validation. We leveraged RNA-seq data from multiple public databases, applying stringent criteria for selection, and identified 60,852 differentially expressed genes across developmental stages. From this pool, 28,558 DEGs were found to exhibit significant temporal regulation in at least two different datasets and were enriched for processes integral to grain development such as carbohydrate metabolism and cell wall organization. Notably, 30% of the 241 known expansin genes showed differential expression during grain growth. Hierarchical clustering and expression level analysis revealed temporal regulation and distinct contributions of expansin subfamilies during the early stages of grain development. Further analysis using co-expression networks underscored the significance of expansin genes, revealing their substantial co-expression with genes involved in cell wall modification. Finally, qPCR validation and grain morphological analysis under field conditions indicated a significant negative correlation between the expression of select expansin genes, and grain size and weight. This study illuminates the potential role of expansin genes in wheat grain development and provides new avenues for targeted genetic improvements in wheat.

6.
Heliyon ; 9(6): e17012, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484364

RESUMO

Despite the positive results of using elicitors to induce resistance against plant diseases, some factors have inhibited the popularization of their use in agriculture. There is an energetic cost related to the elicitors' induced response which can cause undesired effects on growth under low-pressure disease conditions. Elicitors can create phytotoxicity and show high variation in their efficiency between different genotypes within the same crop; in addition, the positive results related to the induced resistance may not repeat in field treatments, adding to the possibility that they are not economically viable. Thus, we carried out two experiments to investigate the technical and economic efficiency of acibenzolar-S-methyl (ASM) and its association with fungicides in the control of leaf diseases of susceptible and resistant wheat varieties, and as how it reflects on the photosynthetic and production performance of wheat. This study showed the limitations of incorporating ASM into foliar fungal disease control in economic terms. However, it was evident that ASM effectively induced plant resistance against Leaf Rust and Powdery Mildew in the field and can be considered a sustainable option for wheat cultivation. Even though its association with chemical control was not the best economic strategy the use of ASM is a tool that can be incorporated into wheat cultivation to minimize the emergence of fungicide-resistant pathogens due to the diversification of modes of action employed and reduce the toxic residue deposition to the environment and human health.

7.
Front Plant Sci ; 14: 1146808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223804

RESUMO

Introduction and aims: The intensive cropping system and imbalance use of chemical fertilizers to pursue high grain production and feed the fast-growing global population has disturbed agricultural sustainability and nutritional security. Understanding micronutrient fertilizer management especially zinc (Zn) through foliar application is a crucial agronomic approach that could improve agronomic biofortification of staple grain crops. The use of plant growth-promoting bacteria (PGPBs) is considered as one of the sustainable and safe strategies that could improve nutrient acquisition and uptake in edible tissues of wheat to combat Zn malnutrition and hidden hunger in humans. Therefore, the objective of this study was to evaluate the best-performing PGPB inoculants in combination with nano-Zn foliar application on the growth, grain yield, and concentration of Zn in shoots and grains, Zn use efficiencies, and estimated Zn intake under wheat cultivation in the tropical savannah of Brazil. Methods: The treatments consisted of four PGPB inoculations (without inoculation, Azospirillum brasilense, Bacillus subtilis, and Pseudomonas fluorescens, applied by seeds) and five Zn doses (0, 0.75, 1.5, 3, and 6 kg ha-1, applied from nano ZnO in two splits by leaf). Results: Inoculation of B. subtilis and P. fluorescens in combination with 1.5 kg ha-1 foliar nano-Zn fertilization increased the concentration of Zn, nitrogen, and phosphorus in the shoot and grain of wheat in the 2019 and 2020 cropping seasons. Shoot dry matter was increased by 5.3% and 5.4% with the inoculation of P. fluorescens, which was statistically not different from the treatments with inoculation of B. subtilis as compared to control. The grain yield of wheat was increased with increasing nano-Zn foliar application up to 5 kg Zn ha-1 with the inoculation of A. brasilense in 2019, and foliar nano-Zn up to a dose of 1.5 kg ha-1 along with the inoculation of P. fluorescens in the 2020 cropping season. The zinc partitioning index was increased with increasing nano Zn application up to 3 kg ha-1 along with the inoculation of P. fluorescens. Zinc use efficiency and applied Zn recovery were improved at low doses of nano-Zn application in combination with the inoculation of A. brasilense, B. subtilis, and P. fluorescens, respectively, as compared to control. Discussion: Therefore, inoculation with B. subtilis and P. fluorescens along with foliar nano-Zn application is considered a sustainable and environmentally safe strategy to increase nutrition, growth, productivity, and Zn biofortification of wheat in tropical savannah.

8.
Microorganisms ; 11(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37110469

RESUMO

Wheat is one of the staple foods of the global population due to its adaptability to a wide range of environments. Nitrogen is one of the crucial limiting factors in wheat production and is considered a challenge to food security. Therefore, sustainable agricultural technologies such as seed inoculation with plant growth-promoting bacteria (PGPBs) can be adopted to promote biological nitrogen fixation (BNF) for higher crop productivity. In this context, the objective of the current study was to evaluate the effects of nitrogen fertilization and seed inoculations with Azospirillum brasilense, Bacillus subtilis and A. brasilense + B. subtilis on agronomic and yield attributes, grain yield, grain N accumulation, N use efficiency and applied N recovery in Brazilian Cerrado, which consists of gramineous woody savanna. The experiment was carried out in two cropping seasons in Rhodic Haplustox soil under a no-tillage system. The experiment was designed in a randomized complete block in a 4 × 5 factorial scheme, with four replications. The treatments consisted of four seed inoculations (control-without inoculation, inoculation with A. brasilense, B. subtilis and A. brasilense + B. subtilis) under five N doses (0, 40, 80, 120 and 160 kg ha-1, applied from urea) at the wheat tillering stage. Seed co-inoculation with A. brasilense + B. subtilis increased grain N accumulation, number of spikes m-1, grains spike-1 and grain yield of wheat in an irrigated no-tillage system of tropical savannah, regardless of the applied N doses. Nitrogen fertilization at a dose of 80 kg ha-1 significantly increased grain N accumulation and number of grains spikes-1 and nitrogen use efficiency. Recovery of applied N was increased with inoculation of B. subtilis and co-inoculation of A. brasilense + B. subtilis at increasing N doses. Therefore, N fertilization can be reduced by the inclusion of co-inoculation with A. brasilense + B. subtilis in the cultivation of winter wheat under a no-tillage system of Brazilian Cerrado.

9.
Front Genet ; 14: 1125940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007938

RESUMO

In the present era of climate instability, Canadian wheat production has been frequently affected by abiotic stresses and by dynamic populations of pathogens and pests that are more virulent and aggressive over time. Genetic diversity is fundamental to guarantee sustainable and improved wheat production. In the past, the genetics of Brazilian cultivars, such as Frontana, have been studied by Canadian researchers and consequently, Brazilian germplasm has been used to breed Canadian wheat cultivars. The objective of this study was to characterize a collection of Brazilian germplasm under Canadian growing conditions, including the reaction of the Brazilian germplasm to Canadian isolates/pathogens and to predict the presence of certain genes in an effort to increase genetic diversity, improve genetic gain and resilience of Canadian wheat. Over 100 Brazilian hard red spring wheat cultivars released from 1986 to 2016 were evaluated for their agronomic performance in eastern Canada. Some cultivars showed good adaptability, with several cultivars being superior or statistically equal to the highest yielding Canadian checks. Several Brazilian cultivars had excellent resistance to leaf rust, even though only a few of these tested positive for the presence of either Lr34 or Lr16, two of the most common resistance genes in Canadian wheat. Resistance for stem rust, stripe rust and powdery mildew was variable among the Brazilian cultivars. However, many Brazilian cultivars had high levels of resistance to Canadian and African - Ug99 strains of stem rust. Many Brazilian cultivars had good Fusarium head blight (FHB) resistance, which appears to be derived from Frontana. In contrast FHB resistance in Canadian wheat is largely based on the Chinese variety, Sumai-3. The Brazilian germplasm is a valuable source of semi-dwarf (Rht) genes, and 75% of the Brazilian collection possessed Rht-B1b. Many cultivars in the Brazilian collection were found to be genetically distinct from Canadian wheat, making them a valuable resource to increase the disease resistance and genetic variability in Canada and elsewhere.

10.
Plants (Basel) ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771526

RESUMO

The global concern about the gap between food production and consumption has intensified the research on the genetics, ecophysiology, and breeding of cereal crops. In this sense, several genetic studies have been conducted to assess the effectiveness and sustainability of collections of germplasm accessions of major crops. In this study, a spectral-based classification approach for the assignment of wheat cultivars to genetically differentiated subpopulations (genetic structure) was carried out using a panel of 316 spring bread cultivars grown in two environments with different water regimes (rainfed and fully irrigated). For that, different machine-learning models were trained with foliar spectral and genetic information to assign the wheat cultivars to subpopulations. The results revealed that, in general, the hyperparameters ReLU (as the activation function), adam (as the optimizer), and a size batch of 10 give neural network models better accuracy. Genetically differentiated groups showed smaller differences in mean wavelengths under rainfed than under full irrigation, which coincided with a reduction in clustering accuracy in neural network models. The comparison of models indicated that the Convolutional Neural Network (CNN) was significantly more accurate in classifying individuals into their respective subpopulations, with 92 and 93% of correct individual assignments in water-limited and fully irrigated environments, respectively, whereas 92% (full irrigation) and 78% (rainfed) of cultivars were correctly assigned to their respective classes by the multilayer perceptron method and partial least squares discriminant analysis, respectively. Notably, CNN did not show significant differences between both environments, which indicates stability in the prediction independent of the different water regimes. It is concluded that foliar spectral variation can be used to accurately infer the belonging of a cultivar to its respective genetically differentiated group, even considering radically different environments, which is highly desirable in the context of crop genetic resources management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA