Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Biodivers ; : e202401011, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110090

RESUMO

Porphyrins are intermediate metabolites in the biosynthesis of vital molecules, including heme, cobalamin, and chlorophyll. Bacterial porphyrins are known to be proinflammatory and have been associated with biofilm production. This study investigated porphyrin production by strains of Corynebacterium diphtheriae using emission spectroscopy, high-performance liquid chromatography with fluorescence detection, a diode array detector, and mass spectrometry. Emission spectroscopy revealed characteristic porphyrin emission spectra in all strains, with coproporphyrin III predominating. Qualitative analysis via different chromatography methods revealed identified coproporphyrin III, uroporphyrin I, and protoporphyrin IX in all the strains. Quantitative analysis revealed strain-dependent coproporphyrin III production. More studies are needed to investigate the relationship between porphyrin production and the virulence potential of Corynebacterium diphtheriae.

2.
MethodsX ; 13: 102863, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39157815

RESUMO

Purslane (Portulaca oleracea) and spinach (Spinacea oleracea) are species with elevated levels of oxalic acid, an antinutrient that interferes in the bioaccessibility of minerals such as calcium and iron. Evaluating methods to determine oxalic acid content with reduced matrix interference, such as employing Flame Atomic Absorption Spectrometry (FAAS), can enhance the specificity of determinations. The different matrices of purslane (whole plant, leaves, and juice) and spinach (whole plant) were tested using three extraction methods (M1, M2, and M3). The oxalic acid content was evaluated by UV-vis spectrophotometry and FAAS (Flame Atomic Absorption Spectrometry). The absence of the precipitation step in M1 resulted in high levels of oxalic acid in the investigated matrices. The quantification of oxalic acid by FAAS for M2 (6M HCl for 1 hour at 100°C) and M3 (0.25N HCl for 15 minutes at 100°C) in the samples of purslane leaves and spinach whole plants yielded statistically similar results. However, the analysis by UV-vis spectrophotometry for M2 and M3 showed significant discrepancies in all evaluated samples, suggesting interference from colored compounds in the food matrix.•Comparison of methods of extraction•Comparison of UV-vis spectrophotometer and FAAS in the quantification of oxalic acid•Analysis of antinutrients in plant matrices.

3.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732218

RESUMO

Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms 1H, carbon 13C and boron 11B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde. Furthermore, this study considers the change in its electronic and spectroscopic properties of this particular ester, when its boron atom is coordinated with a fluoride anion. The calculations were carried out using the LSDA and B3LYP functionals in Gaussian-16, and PBE in CASTEP. The results show that the B3LYP functional gives the best approximation to the experimental data. The formation of a coordinated covalent B-F bond highlights the remarkable sensitivity of the NMR chemical shifts of carbon, oxygen, and boron atoms and their surroundings. Furthermore, this bond also highlights the changes in the electron transitions bands n → π* and π → π* during the absorption and emission of a photon in the UV-vis, and in the stretching bands of the C=C bonds, and bending of BO2 in the infrared spectrum. This study not only contributes to the understanding of the properties of boronate esters but also provides important information on the interactions and responses optoelectronic of the compound when is bonded to a fluorine atom.


Assuntos
Benzaldeídos , Benzaldeídos/química , Espectroscopia de Ressonância Magnética , Teoria da Densidade Funcional , Flúor/química , Boro/química , Modelos Moleculares , Ésteres/química , Espectrofotometria Infravermelho , Estrutura Molecular , Íons/química
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123965, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295596

RESUMO

The simulated distillation curve (ASTM/D-7169) is a quantitative method to determine fractions of crude oils by boiling point temperature ranges (36-720 °C). In this work, 45 samples of typical Colombian crudes were selected, and the samples were produced under conventional process. Also 8 upgraded crude oils under catalytic aquathermolysis conditions at laboratory scale were added. The tests were developed at 270 °C and 800psi (@25 °C) during 66 h of reaction. In addition, 30 samples were selected for density tests, according to the pycnometer method. Subsequently, the crude oil samples under study were diluted in chloroform and analyzed by UV-VIS Spectroscopy. The UV-VIS spectra were correlated with selected properties by using PCA-MLR and PLS models. The distillation curves of the crude oils were modelled using the Riazi probability function. The prediction models of parameters To, A, and B from the Riazi probability function exhibited R2 correlation coefficients, higher than 0.94. The correlation model for the crude oil density showed a much better coefficient, higher than 0.99 and Root-Mean-Squared-Error (RMSE) close to 0.004. Additionally, even more important is the contribution of the use of UV-VIS spectroscopy as a useful tool to quickly evaluate the quality of crude oil.

5.
J Photochem Photobiol B ; 247: 112781, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657188

RESUMO

Bovine brucellosis diagnosis is a major problem to be solved; the disease has a tremendous economic impact with significant losses in meat and dairy products, besides the fact that it can be transmitted to humans. The sanitary measures instituted in Brazil are based on disease control through diagnosis, animal sacrifice, and vaccination. Although the currently available diagnostic tests show suitable quality parameters, they are time-consuming, and the incidence of false-positive and/or false-negative results is still observed, hindering effective disease control. The development of a low-cost, fast, and accurate brucellosis diagnosis test remains a need for proper sanitary measures at a large-scale analysis. In this context, spectroscopy techniques associated with machine learning tools have shown great potential for use in diagnostic tests. In this study, bovine blood serum was investigated by UV-vis spectroscopy and machine learning algorithms to build a prediction model for Brucella abortus diagnosis. Here we first pre-treated the UV raw data by using Standard Normal Deviate method to remove baseline deviation, then apply principal component analysis - a clustering method - to observe the group formation tendency; the first results showed no clustering tendency with a messy sample score distribution, then we properly select the main principal components to improve clusterization. Finally, by using machine learning algorithms (SVM and KNN), the predicting models achieved a 92.5% overall accuracy. The present methodology provides a test result in an average time of 5 min, while the standard diagnosis, with the screening and confirmatory tests, can take up to 48 h. The present result demonstrates the method's viability for diagnosing bovine brucellosis, which can significantly contribute to disease control programs in Brazil and other countries.


Assuntos
Brucella abortus , Brucelose Bovina , Animais , Bovinos , Humanos , Brucelose Bovina/diagnóstico , Testes Sorológicos , Brasil
6.
J Mol Model ; 29(9): 298, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642802

RESUMO

CONTEXT: Triazene compounds (-NNN(H)-) exhibit versatility in biological, physical, and chemical applications. In their anionic form (-NNN-)(-), they can act as coordinating sites for metals, forming metallic complexes. In this study, two new isomeric triazene compounds with meta- and para-substituents in their neutral and anionic forms were investigated. A combination of detailed experimental spectroscopic characterization and computational chemistry analyses were employed. The new compounds, 1-(2-benzamide)-3-(3-nitrophenyl) triazene (m-TZN) and 1-(2-benzamide)-3-(4-nitrophenyl) triazene (p-TZN), were compared to 1,3-diphenyltriazene (dph-TZN) to understand the effects of functionalization and targeted triazene deprotonation. The anionic forms are stable, and our investigation suggests that these new compounds are suitable tridentate ligands that can act as chelating agents for metallic cations in stable complexes, similar to those found in vitamin B12. METHODS: The absorption, vibrational, and electronic properties of the newly synthesized triazene compounds were extensively characterized using FT-IR/FT-Raman and UV-Vis spectroscopy. Their distinct molecular properties, intramolecular hydrogen bond effects, stability, and electronic transitions were investigated using the ORCA software. These analyses involved DFT and TD-DFT calculations at the ωB97X-D3/Def2-TZVP level of theory with THF CPCM implicit solvation to determine the molecular topology and electronic structure. The advanced STEOM-DLPNO-CCSD method for excited states was employed, enabling an in-depth analysis of ground and excited-state chemistry, accounting for precise electronic correlation and solvation effects. Explicit THF solvation was tested on the full TD-DFT ωB97X-D3/Def2-TZVP level and using ONIOM on the STEOM calculation. Reactivity was studied using Fukui functions, and action as chelating agents was investigated using GFN-xTB2 and DFT.

7.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374540

RESUMO

In this work, we report how manganese phthalocyanine (MnPc) films obtained using the ultrasonic spray-pyrolysis technique at 40 °C deposited on glass substrate subjected to thermal annealing at 100 °C and 120 °C. The MnPc films were characterized using UV/Vis spectroscopy, Raman spectroscopy, X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). The absorption spectra of the MnPc films were studied in a wavelength range from 200 to 850 nm, where the characteristic bands of a metallic phthalocyanine known as B and Q bands were observed in this range of the spectrum. The optical energy band (Eg) was calculated using the Tauc equation. It was found that, for these MnPc films, the Eg has the values of 4.41, 4.46, and 3.58 eV corresponded to when they were deposited, annealing at 100 °C and 120 °C, respectively. The Raman spectra of the films showed the characteristic vibrational modes of the MnPc films. In the X-Ray diffractograms of these films, the characteristic diffraction peaks of a metallic phthalocyanine are observed, presenting a monoclinic phase. The SEM images of these films were studied in a cross-section obtaining thicknesses of 2 µm for the deposited film and 1.2 µm and 0.3 µm for the annealed films at 100 °C and 120 °C. Additionally, in the SEM images of these films, average particle sizes ranging from 4 to 0.041 µm were obtained. The results agree with those reported in the literature for MnPc films deposited by performing other techniques.

8.
Materials (Basel) ; 16(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374583

RESUMO

The production of waxes from vegetable oils, such as palm oil, for use as a base material in products for human applications is an alternative to those derived from petroleum and animals. Seven palm oil-derived waxes, called biowaxes (BW1-BW7) in this work, were obtained by catalytic hydrotreating of refined and bleached African palm oil and refined palm kernel oil. They were characterized by three properties: compositional, physicochemical (melting point, penetration value, and pH), and biological (sterility, cytotoxicity, phototoxicity, antioxidant, and irritant). Their morphologies and chemical structures were studied by SEM, FTIR, UV-Vis, and 1H NMR. The BWs presented structures and compositions similar to natural biowaxes (beeswax and carnauba). They had a high concentration of waxy esters (17%-36%) with long alkyl chains (C, 19-26) per carbonyl group, which are related to high melting points (<20-47.9 °C) and low penetration values (2.1-3.8 mm). They also proved to be sterile materials with no cytotoxic, phototoxic, antioxidant, or irritant activity. The biowaxes studied could be used in cosmetic and pharmacological products for human use.

9.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551068

RESUMO

A new transmission route of SARS-CoV-2 through food was recently considered by the World Health Organization (WHO), and, given the pandemic scenario, the search for fast, sensitive, and low-cost methods is necessary. Biosensors have become a viable alternative for large-scale testing because they overcome the limitations of standard techniques. Herein, we investigated the ability of gold spherical nanoparticles (AuNPs) functionalized with oligonucleotides to detect SARS-CoV-2 and demonstrated their potential to be used as plasmonic nanobiosensors. The loop-mediated isothermal amplification (LAMP) technique was used to amplify the viral genetic material from the raw virus-containing solution without any preparation. The detection of virus presence or absence was performed by ultraviolet-visible (UV-Vis) absorption spectroscopy, by monitoring the absorption band of the surface plasmonic resonance (SPR) of the AuNPs. The displacement of the peak by 525 nm from the functionalized AuNPs indicated the absence of the virus (particular region of gold). On the other hand, the region ~300 nm indicated the presence of the virus when RNA bound to the functionalized AuNPs. The nanobiosensor system was designed to detect a region of the N gene in a dynamic concentration range from 0.1 to 50 × 103 ng·mL-1 with a limit of detection (LOD) of 1 ng·mL-1 (2.7 × 103 copy per µL), indicating excellent sensitivity. The nanobiosensor was applied to detect the SARS-CoV-2 virus on the surfaces of vegetables and showed 100% accuracy compared to the standard quantitative reverse transcription polymerase chain reaction (RT-qPCR) technique. Therefore, the nanobiosensor is sensitive, selective, and simple, providing a viable alternative for the rapid detection of SARS-CoV-2 in ready-to-eat vegetables.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Ouro , Ressonância de Plasmônio de Superfície , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
10.
Materials (Basel) ; 15(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233940

RESUMO

The electropolymerization of metallo-octaethylporphyrins (OEP) containing copper, zinc or nickel metal were performed using cyclic voltammetry at three different potential ranges. The electropolymerized porphyrins were characterized by UV-Vis and Raman spectroscopies and the Soret band (393-445 nm) and Raman bands were used to assess the degree of electropolymerization obtained. The application for an analytical use of the modified electrodes to determine phenobarbital in aqueous solution was evaluated. The electropolymerized CuOEP produced at potentials ranging from 0.0 to 2.2 V was the best performer with a limit of detection (LoD) of 10 mg L-1 (43.07 µM), a linear range of 10-150 mg L-1 (43.07 to 646 µM), an average precision of 4.3% (%RSD) and an average % recovery of 101.34%. These results indicate that the CuOEP-modified electrode is suitable for the analysis of phenobarbital in human samples, as the concentration range varies from 10 to 40 mg L-1 (43.07 to 172.27 µM), typically found in antiepileptic treatments, to those at the toxic level (172-258 µM) or lethal levels (345-650 µM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA