Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
NanoImpact ; 35: 100517, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848992

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have gained significant attention in biomedical research due to their potential applications. However, little is known about their impact and toxicity on testicular cells. To address this issue, we conducted an in vitro study using primary mouse testicular cells, testis fragments, and sperm to investigate the cytotoxic effects of sodium citrate-coated SPIONs (Cit_SPIONs). Herein, we synthesized and physiochemically characterized the Cit_SPIONs and observed that the sodium citrate diminished the size and improved the stability of nanoparticles in solution during the experimental time. The sodium citrate (measured by thermogravimetry) was biocompatible with testicular cells at the used concentration (3%). Despite these favorable physicochemical properties, the in vitro experiments demonstrated the cytotoxicity of Cit_SPIONs, particularly towards testicular somatic cells and sperm cells. Transmission electron microscopy analysis confirmed that Leydig cells preferentially internalized Cit_SPIONs in the organotypic culture system, which resulted in alterations in their cytoplasmic size. Additionally, we found that Cit_SPIONs exposure had detrimental effects on various parameters of sperm cells, including motility, viability, DNA integrity, mitochondrial activity, lipid peroxidation (LPO), and ROS production. Our findings suggest that testicular somatic cells and sperm cells are highly sensitive and vulnerable to Cit_SPIONs and induced oxidative stress. This study emphasizes the potential toxicity of SPIONs, indicating significant threats to the male reproductive system. Our findings highlight the need for detailed development of iron oxide nanoparticles to enhance reproductive nanosafety.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro , Espermatozoides , Testículo , Masculino , Animais , Camundongos , Testículo/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Nanopartículas Magnéticas de Óxido de Ferro/química , Espermatozoides/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Citrato de Sódio , Células Cultivadas
2.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35890108

RESUMO

Linearolactone (LL) is a neo-clerodane type diterpene that has been shown to exert giardicidal effects; however, its mechanism of action is unknown. This work analyzes the cytotoxic effect of LL on Giardia intestinalis trophozoites and identifies proteins that could be targeted by this active natural product. Increasing concentrations of LL and albendazole (ABZ) were used as test and reference drugs, respectively. Cell cycle progression, determination of reactive oxygen species (ROS) and apoptosis/necrosis events were evaluated by flow cytometry (FCM). Ultrastructural alterations were analyzed by transmission electron microscopy (TEM). Ligand-protein docking analyses were carried out using the LL structure raised from a drug library and the crystal structure of an aldose reductase homologue (GdAldRed) from G. intestinalis. LL induced partial arrest at the S phase of trophozoite cell cycle without evidence of ROS production. LL induced pronecrotic death in addition to inducing ultrastructural alterations as changes in vacuole abundances, appearance of perinuclear and periplasmic spaces, and deposition of glycogen granules. On the other hand, the in silico study predicted that GdAldRed is a likely target of LL because it showed a favored change in Gibbs free energy for this complex.

3.
BMC Microbiol ; 21(1): 211, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253188

RESUMO

BACKGROUND: Leishmaniasis is an infectious disease caused by parasites of the genus Leishmania and presents different clinical manifestations. The adverse effects, immunosuppression and resistant strains associated with this disease necessitate the development of new drugs. Nanoparticles have shown potential as alternative antileishmanial drugs. We showed in a previous study the biosynthesis, characterization and ideal concentration of a nanocomposite that promoted leishmanicidal activity. In the present study, we conducted a specific analysis to show the mechanism of action of AgNP-PVP-MA (silver nanoparticle-polyvinylpyrrolidone-[meglumine antimoniate (Glucantime®)]) nanocomposite during Leishmania amazonensis infection in vitro. RESULTS: Through ultrastructural analysis, we observed significant alterations, such as the presence of small vesicles in the flagellar pocket and in the extracellular membrane, myelin-like structure formation in the Golgi complex and mitochondria, flagellum and plasma membrane rupture, and electrodense material deposition at the edges of the parasite nucleus in both evolutive forms. Furthermore, the Leishmania parasite infection index in macrophages decreased significantly after treatment, and nitric oxide and reactive oxygen species production levels were determined. Additionally, inflammatory, and pro-inflammatory cytokine and chemokine production levels were evaluated. The IL-4, TNF-α and MIP-1α levels increased significantly, while the IL-17 A level decreased significantly after treatment. CONCLUSIONS: Thus, we demonstrate in this study that the AgNP-PVP-MA nanocomposite has leishmanial potential, and the mechanism of action was demonstrated for the first time, showing that this bioproduct seems to be a potential alternative treatment for leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Leishmania/efeitos dos fármacos , Nanocompostos/uso terapêutico , Animais , Células Cultivadas , Técnicas In Vitro , Leishmania/fisiologia , Leishmania/ultraestrutura , Macrófagos/parasitologia , Antimoniato de Meglumina/química , Antimoniato de Meglumina/farmacologia , Antimoniato de Meglumina/uso terapêutico , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Povidona/química , Povidona/farmacologia , Povidona/uso terapêutico , Prata/química , Prata/farmacologia , Prata/uso terapêutico
4.
Ultrastruct Pathol ; 39(4): 217-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25569534

RESUMO

Manganese (Mn) is able to cross the blood-brain barrier and induces functional and structural alterations during the intoxication by this metal. Therefore, the effects of chronic administration of Mn in the caudate nucleus of mice were evaluated by electron microscopy. Male albino mice were injected intraperitoneally with MnCl2 (5 mg/kg/d) 5 d per week during 9 weeks. The control group received only 0.9% of NaCl solution. The caudate nuclei were extracted and subsequently processed to be observed on a conventional transmission electron microscope at 2, 4, 6, and 9 weeks after treatment. A high percentage of vacuolated and swollen mitochondria were found throughout all the analyzed periods. Myelin disarrangement and ultrastructural alterations related to edema were observed increased in Mn-treated mice at week 9. Granular degeneration of myelin at week 9 accompanied with deposition of electron dense granules in the neuropil was also observed. Edema in neuropil and glial cells was detected from week 2 to week 9 accompanied by swollen mitochondria. Neuronal bodies, synaptic terminals, and perivascular cells were found swollen. Decreased electron density in postsynaptic areas and decreased and dispersed synaptic vesicles in presynaptic areas were noted in Mn-treated animals. Some neurons from Mn-treated mice showed cisternae dilation of the Golgi apparatus. These results suggest that Mn-treatment produces structural alterations in the caudate nucleus that could be responsible for some of the neurotoxic effects of this metal.


Assuntos
Núcleo Caudado/ultraestrutura , Cloretos/toxicidade , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/ultraestrutura , Animais , Núcleo Caudado/efeitos dos fármacos , Masculino , Compostos de Manganês , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Bainha de Mielina/efeitos dos fármacos , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Espectrofotometria Atômica
5.
Mem. Inst. Oswaldo Cruz ; 107(1): 31-38, Feb. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-612803

RESUMO

We assessed fluconazole susceptibility in 52 Candida tropicalis clinical strains using seven antifungal susceptibility methods, including broth microdilution (BMD) [standard M27 A3 (with neutral and acid pH), ATB Fungus 3, Vitek 2 system and flow cytometric analysis] and agar-based methods (disk diffusion and E-test). Trailing growth, detection of cell-associated secreted aspartic proteases (Saps) and morphological and ultrastructural traits of these clinical strains were also examined. The ranges of fluconazole 24 h-minimum inhibitory concentration (MIC) values were similar among all methods. The essential agreement among the methods used for MIC determinations was excellent and all methods categorised all strains as susceptible, except for one strain that showed a minor error. The presence of the trailing effect was assessed by six methods. Trailing positivity was observed for 86.5-100 percent of the strains. The exception was the BMD-Ac method where trailing growth was not observed. Morphological and ultrastructural alterations were detected in C. tropicalis trailing cells, including mitochondrial swelling and cell walls with irregular shapes. We tested the production of Saps in 13 C. tropicalis strains expressing trailing growth through flow cytometry. Our results showed that all of the C. tropicalis strains up-regulated surface Sap expression after 24 h or 48 h of exposure to fluconazole, which was not observed in untreated yeast strains. We concluded that C. tropicalis strains expressing trailing growth presented some particular features on both biological and ultrastructural levels.


Assuntos
Humanos , Antifúngicos/farmacologia , Candida tropicalis/efeitos dos fármacos , Fluconazol/farmacologia , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/ultraestrutura , Microscopia Eletrônica de Transmissão , Testes de Sensibilidade Microbiana/métodos , Fatores de Tempo
6.
Rev. cient. (Maracaibo) ; 20(2): 144-152, mar. 2010. ilus, graf
Artigo em Espanhol | LILACS | ID: lil-631054

RESUMO

Manganese (Mn) is an essential metal that is an integral part of some metalloproteins and acts as a cofactor of several enzymes. Mn is able to cross the blood-brain barrier and enter the nervous system. It has a low toxicity but exposure to high concentrations or for prolonged periods of time produce neurological disorders in humans that initially cause hallucinations and compulsive behaviour followed by stiffness, muscle weakness, ataxia, memory loss and a tremor resembling Parkinson’s disease. This study assessed the ultrastructural alterations produced in the hypothalamus of male albino mice injected intraperitoneally with MnCl2 (5 mg Mn/Kg/day) and a control group injected with NaCl 0.9% (0.1 mL) daily for 9 weeks. The animals were sacrificed by cervical dislocation. The hypothalamus was extracted and subsequently processed to be observed on the conventional transmission electron microscope at 2, 4, 6 and 9 weeks of treatment. After 2 weeks it was observed a slight disruption of the Golgi apparatus and the myelin fibers. After 4 weeks the disorganization was accentuated and dilatation of the endoplasmic reticulum (ER) and alterations of mitochondria were observed. After 6 weeks the normal pattern of the myelin sheath was lost. After 9 weeks of treatment it was found swollen mitochondria with lost of crystae, a marked dilatation of rough and smooth endoplasmic reticulum and dendrites with a high degree of swelling. These results suggest that the neurotoxic effect of Mn increases as time of exposure passes and produces ultrastructural alterations of nerve cells in the hypothalamus.


El manganeso (Mn) es un metal esencial que forma parte de algunas metaloproteínas y actúa como cofactor de varias enzimas. El Mn es capaz de atravesar la barrera hematoencefálica e ingresar al sistema nervioso. Presenta baja toxicidad, pero la exposición a altas concentraciones o por tiempos prolongados produce alteraciones neurológicas en humanos que inicialmente provocan alucinaciones y conducta compulsiva seguidas por rigidez, debilidad muscular, ataxia, pérdida de la memoria y temblor, síntomas similares a los de la enfermedad de Parkinson. En el presente estudio se evaluaron los efectos tóxicos del Mn sobre la ultraestructura del hipotálamo de ratones. Se inyectaron intraperitonealmente ratones albinos machos con MnCl2 (5 mg Mn/Kg/día durante 9 semanas). El grupo control recibió NaCl 0,9% (0,1 mL/dosis). Los animales se sacrificaron por dislocación cervical, extrayéndose y disecándose el hipotálamo, que posteriormente se procesó para realizar observaciones al microscopio electrónico de transmisión convencional a las 2; 4; 6 y 9 semanas de tratamiento. A las 2 semanas, se observó ligera desorganización en el aparato de Golgi y en las fibras mielínicas. A las 4 semanas, se acentuó la desorganización y se comenzó a observar dilatación del retículo endoplasmático liso y rugoso asi como mitocondrias alteradas. A las 6 semanas, se encontró pérdida del patrón normal de la cubierta mielínica. Finalizadas las 9 semanas de tratamiento, se observaron mitocondrias hinchadas con pérdida de las crestas, dilatación acentuada del retículo endoplasmático rugoso y liso y dendritas con cierto grado de edema. Estos resultados parecen indicar que el efecto neurotóxico del Mn aumenta a medida que transcurre el tiempo de exposición para producir alteraciones ultraestructurales de las células nerviosas del hipotálamo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA