Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Photodermatol Photoimmunol Photomed ; 40(4): e12985, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38845468

RESUMO

BACKGROUND: Photoprotection is the first measure in the prevention and treatment of the deleterious effects that sunlight can cause on the skin. It is well known that prolonged exposure to solar radiation leads to acute and chronic complications, such as erythema, accelerated skin aging, proinflammatory and procarcinogenic effects, and eye damage, among others. METHODS: A better understanding of the molecules that can protect against ultraviolet radiation and their effects will lead to improvements in skin health. RESULTS: Most of these effects of the sunlight are modulated by oxidative stress and proinflammatory mechanisms, therefore, the supplementation of substances that can regulate and neutralize reactive oxygen species would be beneficial for skin protection. Current evidence indicates that systemic photoprotection should be used as an adjunctive measure to topical photoprotection. CONCLUSION: Oral photoprotectors are a promising option in improving protection against damage induced by UVR, as they contain active ingredients that increase the antioxidant effects of the body, complementing other photoprotection measures. We present a review of oral photoprotectors and their effects.


Assuntos
Substâncias Protetoras , Raios Ultravioleta , Humanos , Administração Oral , Antioxidantes/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Pele/efeitos dos fármacos , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos , Substâncias Protetoras/administração & dosagem
2.
Pharmaceutics ; 16(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794323

RESUMO

Sunscreen products are essential for shielding the skin from ultraviolet (UV) radiation, a leading cause of skin cancer. While existing products serve this purpose, there is a growing need to enhance their efficacy while minimizing potential systemic absorption of UV filters and associated toxicological risks. Liposomal-based formulations have emerged as a promising approach to address these challenges and develop advanced photoprotective products. These vesicular systems offer versatility in carrying both hydrophilic and lipophilic UV filters, enabling the creation of broad-spectrum sunscreens. Moreover, their composition based on phospholipids, resembling that of the stratum corneum, facilitates adherence to the skin's surface layers, thereby improving photoprotective efficacy. The research discussed in this review underscores the significant advantages of liposomes in photoprotection, including their ability to limit the systemic absorption of UV filters, enhance formulation stability, and augment photoprotective effects. However, despite these benefits, there remains a notable gap between the potential of liposomal systems and their utilization in sunscreen development. Consequently, this review emphasizes the importance of leveraging liposomes and related vesicular systems as innovative tools for crafting novel and more efficient photoprotective formulations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38735623

RESUMO

Aquatic environments are subject to ultraviolet B (UVB) radiation incidence, and its effects on organisms are dose-dependent. Besides DNA, mitochondria are an important target of this radiation that causes structural damage and impairs its functional dynamics. Here, we hypothesize that mitophagy acts as an organelle quality control mechanism to mitigate UVB impacts in embryonic cells. Then, freshwater prawn Macrobrachium olfersii embryos was used as a model to investigate the effects of UVB on genes (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) and proteins (TOM20, PINK1, p62 and LC3B) involved in mitophagy modulation. The choice of genes and proteins was based on the identification of mitochondrial membrane (Tomm20, Opa1 and TOM20), mediation of mitophagy (Pink1, Prkn and PINK1), and recognition of mitochondria by the autophagosome membrane (Sqstm1, Map1lc3, p62 and LC3B). First, the phylogeny of all genes presented bootstrap values >80 and conserved domains among crustacean species. Gene expression was inherently modulated during development, with transcripts (Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3) overexpressed in the initial and final stages of development. Moreover, UVB radiation induced upregulation of Tomm20, Opa1, Pink, Prkn, Sqstm1, and Map1lc3 genes at 6 h after exposure. Interestingly, after 12 h, the protein content of PINK1, p62, and LC3B increased, while TOM20 was not responsive. Despite UVB radiation's harmful effects on embryonic cells, the chronology of gene expression and protein content indicates rapid activation of mitophagy, serving as an organelle quality control mechanism, given the analyzed cells' integrity.


Assuntos
Mitofagia , Palaemonidae , Raios Ultravioleta , Animais , Raios Ultravioleta/efeitos adversos , Mitofagia/efeitos da radiação , Palaemonidae/efeitos da radiação , Palaemonidae/embriologia , Palaemonidae/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Embrião não Mamífero/efeitos da radiação , Embrião não Mamífero/metabolismo , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Filogenia , Organelas/metabolismo , Organelas/efeitos da radiação
4.
Nutrients ; 16(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674904

RESUMO

The global population is at risk of vitamin D deficiency due to low exposure to sunlight and low intake of the vitamin through diet. The aim of this study was to investigate in women the association between vitamin D status and parathyroid hormone (PTH), ultraviolet radiation, lifestyle, ethnicity, social conditions, and residential greenness. A 1-year longitudinal study assessed vitamin D status in 309 women living at latitude 51°14' N. Blood samples were taken four times throughout the year for analysis of 25(OH)D and serum PTH concentration. After each seasonal visit, the individuals completed 4-day diet diaries and used two dosimeter badges for 1 week to estimate weekly UVR exposure. A questionnaire was applied to provide information about lifestyle and their ethnicity. Residential greenness was measured by Normalized Difference Vegetation Index (NDVI), within a 1000 m radius around each participant's home address. Women living in greener spaces were more likely to have improved vitamin D status (RR: 1.51; 95%CI: 1.13-2.02), as well as those who were more exposed to UVR (RR: 2.05; 95%CI: 1.44-2.92). Our results provide an insight into the connection between residential greenness, lifestyle, and vitamin D status comparing two ethnicities in a country with a temperate climate and with a high degree of urbanization.


Assuntos
Povo Asiático , Estilo de Vida , Deficiência de Vitamina D , Vitamina D , População Branca , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Longitudinais , Hormônio Paratireóideo/sangue , Características de Residência , Luz Solar , Raios Ultravioleta , Reino Unido/epidemiologia , Vitamina D/sangue , Vitamina D/análogos & derivados , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/etnologia , Deficiência de Vitamina D/epidemiologia , População do Sul da Ásia
5.
Photochem Photobiol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445720

RESUMO

Lopezia racemosa is known as a "mosquito flower or perlilla." It is commonly found in corn crops. In traditional Mexican medicine, this plant is used to treat stomach cancer and urinary tract infections. Likewise, compounds and extracts isolated from plants have shown cytotoxic and anti-inflammatory effects. The objective of this study was to evaluate the photochemoprotective effect of topical treatment with the methanolic extract of L. racemosa (MELR) as a photochemoprotective agent against the harmful effects of UV irradiation (UVR) on a bacterial model and hairless mice. The MELR components were separated and analyzed via HPLC-UV-ESI-MS. Antioxidant activity was evaluated by the ability of MERL to scavenge DPPH and ABTS free radicals and by its FRAP capacity. The toxicity of MELR was evaluated in keratinocyte cultures. The photoprotective capacity of MELR was assessed through challenge experiments using models with bacteria and hairless CD1 et/et mice; cytokines related to the damage caused by UVR were also measured. In the methanolic extract of L. racemosa, five metabolites were detected and identified: two isomers of quercetin 6-C glycoside, orientin, quercetin 3-(6″-acetylglycoside) and quercetin 3-(6″-galloylglycoside) 7-(2,3-dihydroxytetrahydro-2H-pyran-4-yl acetate). MELR exhibited DPPH and ABTS radical scavenging properties, in addition to Fe ion reducing activity. MELR showed a photoprotective effect against UVB radiation-induced death in Escherichia coli bacteria. At the histological level, topical treatment of CD-1 et/et mice with MERL reduced the damage caused by UVR. Quantification of interleukins in the blood of mice revealed that the expression of IL-12 was greater in the control group treated with ultraviolet radiation than in the group protected with MELR. The methanolic extract of L. racemosa has photochemoprotective properties.

6.
Sci Total Environ ; 924: 171647, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479531

RESUMO

Solar ultraviolet-B (UVB) radiation has increased due to stratospheric ozone depletion, climate and ecosystem changes and is a driver of amphibian population declines. Photoenzymatic repair (PER) is a critical mechanism for limiting UVB lethality in amphibian larvae. However, the link between PER and the UVB-induced effects remains understudied through long-term investigations in vivo. Here, we assessed how larval PER determines the lethal and sublethal effects induced by environmentally relevant acute UVB exposure until the juvenile phase in the Neotropical frog Odontophrynus americanus. We conducted laboratory-based controlled experiments in which tadpoles were or were not exposed to UVB and subsequently were exposed to light (for PER activation) or dark treatments. Results showed that the rates of mortality and apoptosis observed in post-UVB dark treatment are effectively limited in post-UVB light treatment, indicating PER (and not dark repair, i.e. nucleotide excision repair) is critical to limit the immediate genotoxic impact of UVB-induced pyrimidine dimers. Nonetheless, even tadpoles that survived UVB exposure using PER showed sublethal complications that extended to the juvenile phase. Tadpole responses included alterations in morphology, chromosomal instability, increased skin susceptibility to fungal proliferation, as well as increased generation of reactive oxygen species. The short-term effects were carried over to later stages of life because metamorphosis time increased and juveniles were smaller. No body abnormalities were visualized in tadpoles, metamorphs, and juveniles, suggesting that O. americanus is UVB-resistant concerning these responses. This study reveals that even frog species equipped with an effective PER are not immune to carry-over effects from early UVB exposure, which are of great ecological relevance as late metamorphosis and smaller juveniles may impact individual performance and adult recruitment to breeding. Future ecological risk assessments and conservation and management efforts for amphibian species should exercise caution when linking PER effectiveness to UVB resistance.


Assuntos
Reparo do DNA , Ecossistema , Animais , Larva/efeitos da radiação , Dano ao DNA , Anuros , Raios Ultravioleta/efeitos adversos
7.
Plant Foods Hum Nutr ; 79(1): 194-201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329613

RESUMO

A mixed-mode solar drying was developed to evaluate the physicochemical and colorimetric properties of Zompantle (Erythrina americana). A 22-factorial design was used; the operation mode (mesh shade and direct) and airflow (natural convection and forced convection) were established as factors in this design. The initial moisture content in the Zompantle flower was reduced from 89.03% (w.b) to values that ranged from 3.84% to 5.84%; depending on the operation mode of the dryer, the final water activity ranged from 0.25 to 0.33. The Zompantle's components as proteins (4.28%), antioxidant activity (18.8%), carbohydrates (4.83%), fat (0.92%), fiber (3.71%), ash (0.94%), and total soluble solids (3°Brix) increased as the water was evaporated during the drying. The increment in the Zompantle's components depends on the operation mode; in direct mode and natural convection, the proteins, antioxidant activity, carbohydrates, fat, fiber, ash, and total soluble solids were 6.99%, 61.69%, 79.05%, 1.20%, 3.84%, 8.70%, and 45 °Brix, respectively. The total drying efficiency was 14.84% with the direct mode and natural convection (DM-NC) and 17.10% with the mesh shade and natural convection (MS-NC). The Hue angle measures the property of the color; the indirect mode and natural convection keep the hue angle close to the initial value (29.2 °). The initial chroma value of the Zompantle flower was 55.07; the indirect mode and natural convection kept high saturation (37.58); these dry conditions ensured a red color in the dehydrated Zompantle. Dehydrated Zompantle's flowers could have several practical applications, such as an additive in traditional Mexican cuisine.


Assuntos
Antioxidantes , Erythrina , Antioxidantes/química , Colorimetria , Carboidratos , Água
8.
Environ Pollut ; 341: 122936, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979648

RESUMO

Water pollution via natural and anthropogenic activities has become a global problem, which can lead to short and long-term impacts on humans' health and the ecosystems. Substantial amounts of individual or mixtures of organic pollutants move into the surface water via point and non-point source contamination. Some of these compounds are known to be toxic and difficult to remove from water sources, thus affecting their quality. Moreover, environmental regulations in high-income countries have become very strict for drinking water treatment over the past decades, especially regarding pesticides. This study aimed to evaluate the efficiency of different residential water treatments to remove 13 pesticides with distinct physicochemical characteristics from the drinking water. Nine water treatments were used: four membrane filters, an activated carbon filter, ultraviolet radiation, reverse osmosis, ion exchange resins, and ozonation. The trial was performed with tap water contaminated with an environmental concentration of 13 pesticides. According to the results, activated carbon and reverse osmosis were 100% efficient for pesticide removal, followed by ion exchange resins and ultraviolet radiation. Membrane filters, in general, showed low efficiency and should, therefore, not be used for this purpose.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Humanos , Carvão Vegetal , Ecossistema , Raios Ultravioleta , Purificação da Água/métodos , Resinas de Troca Iônica
9.
Lasers Med Sci ; 38(1): 253, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930459

RESUMO

Studies have demonstrated bacterial inactivation by radiations at wavelengths between 400 and 500 nm emitted by low-power light sources. The phototoxic activity of these radiations could occur by oxidative damage in DNA and membrane proteins/lipids. However, some cellular mechanisms can reverse these damages in DNA, allowing the maintenance of genetic stability. Photoreactivation is among such mechanisms able to repair DNA damages induced by ultraviolet radiation, ranging from ultraviolet A to blue radiations. In this review, studies on the effects of violet and blue lights emitted by low-power LEDs on bacteria were accessed by PubMed, and discussed the repair of ultraviolet-induced DNA damage by photoreactivation mechanisms. Data from such studies suggested bacterial inactivation after exposure to violet (405 nm) and blue (425-460 nm) radiations emitted from LEDs. However, other studies showed bacterial photoreactivation induced by radiations at 348-440 nm. This process occurs by photolyase enzymes, which absorb photons at wavelengths and repair DNA damage. Although authors have reported bacterial inactivation after exposure to violet and blue radiations emitted from LEDs, pre-exposure to such radiations at low fluences could activate the photolyases, increasing resistance to DNA damage induced by ultraviolet radiation.


Assuntos
Desoxirribodipirimidina Fotoliase , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Luz , Fótons , DNA
10.
Microorganisms ; 11(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894192

RESUMO

Mycobacterium bovis BCG Moreau is the main Brazilian strain for vaccination against tuberculosis. It is considered an early strain, more like the original BCG, whereas BCG Pasteur, largely used as a reference, belongs to the late strain clade. BCG Moreau, contrary to Pasteur, is naturally deficient in homologous recombination (HR). In this work, using a UV exposure test, we aimed to detect differences in the survival of various BCG strains after DNA damage. Transcription of core and regulatory HR genes was further analyzed using RT-qPCR, aiming to identify the molecular agent responsible for this phenotype. We show that early strains share the Moreau low survival rate after UV exposure, whereas late strains mimic the Pasteur phenotype, indicating that this increase in HR efficiency is linked to the evolutionary clade history. Additionally, RT-qPCR shows that BCG Moreau has an overall lower level of these transcripts than Pasteur, indicating a correlation between this gene expression profile and HR efficiency. Further assays should be performed to fully identify the molecular mechanism that may explain this differential phenotype between early and late BCG strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA