Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 786
Filtrar
1.
Clin Transl Oncol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090420

RESUMO

BACKGROUND: The nod-like receptor protein 3 (NLRP3) is one of the most characterized inflammasomes involved in the pathogenesis of several cancers, including hepatocellular carcinoma (HCC). However, the effects of genetic variants in the NLRP3 inflammasome-related genes on survival of hepatitis B virus (HBV)-related HCC patients are unclear. METHODS: We performed multivariable Cox proportional hazards regression analysis to evaluate associations between 299 single-nucleotide polymorphisms (SNPs) in 16 NLRP3 inflammasome-related genes and overall survival (OS) of 866 patients with HBV-related HCC. We further performed expression quantitative trait loci (eQTL) analysis using the data from the GTEx project and 1000 Genomes projects, and performed differential expression analysis using the TCGA dataset to explore possible molecular mechanisms underlying the observed associations. RESULTS: We found that two functional SNPs (PANX1 rs3020013 A > G and APP rs9976425 C > T) were significantly associated with HBV-related HCC OS with the adjusted hazard ratio (HR) of 0.83 [95% confidence interval (CI) = 0.73-0.95, P = 0.008], and 1.26 (95% CI = 1.02-1.55, P = 0.033), respectively. Moreover, the eQTL analysis revealed that the rs3020013 G allele was correlated with decreased mRNA expression levels of PANX1 in both normal liver tissues (P = 0.044) and whole blood (P < 0.001) in the GTEx dataset, and PANX1 mRNA expression levels were significantly higher in HCC samples and associated with a poorer survival of HCC patients. However, we did not observe such correlations for APP rs9976425. CONCLUSIONS: These results indicated that SNPs in the NLRP3 inflammasome-related genes may serve as potential biomarkers for HBV-related HCC survival, once replicated by additional larger studies.

2.
Cytokine ; 182: 156716, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111114

RESUMO

Ulcerative colitis (UC) is characterized by chronic inflammation of the large intestine with involvement of Th17 cells and interleukin (IL)-17A. The role of IL17A and IL17A receptor (IL17RA) variants in pathophysiology of UC still remains inconclusive. The aim was to evaluate the association between IL17A and IL17RA variants with susceptibility, IL-17A plasma levels, and endoscopic activity in UC. The study included 104 patients with UC and 213 controls. Patients were divided according to endoscopic activity (remission/mild and moderate/severe). The IL17A rs3819024 A>G and rs3819025 G>A, and IL17RA rs2241043 C>T, rs2241049 A>G, and rs6518661 G>A variants were genotyped using real time polymerase chain reaction. IL-17A plasma levels were determined using immunofluorimetric assay. Neither IL17A nor IL17RA variants were associated with UC susceptibility. The IL17A rs3819024 AG genotype was associated to high levels of IL-17 only in patients. Patients with the G allele of IL17RA rs2241049 showed 2.944 more chance of developing moderate/severe disease. The haplotype analysis showed that IL17RA rs2241049 and rs6518661 was not associated with UC susceptibility and haplotypes constituted with G allele of these variants were not associated with disease severity (p = 0.09). In conclusion, the IL17A rs3819024 AG genotype was associated with elevated IL-17A plasma levels in patients with UC but not in controls and the IL17RA rs2241049 AG+GG genotypes were associated to severity of UC. These results suggest a possible hidden interaction between the IL17A rs3819024 variant and other genetic, environmental, and epigenetic factors in the IL-17A expression that is present only in patients with UC.


Assuntos
Colite Ulcerativa , Predisposição Genética para Doença , Interleucina-17 , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina-17 , Humanos , Interleucina-17/genética , Interleucina-17/sangue , Colite Ulcerativa/genética , Colite Ulcerativa/sangue , Masculino , Feminino , Receptores de Interleucina-17/genética , Adulto , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Haplótipos/genética , Genótipo , Alelos , Estudos de Casos e Controles , Índice de Gravidade de Doença
3.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125749

RESUMO

Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.


Assuntos
Anticorpos Antivirais , COVID-19 , Reações Cruzadas , Vírus da Dengue , Epitopos de Linfócito B , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , Reações Cruzadas/imunologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Epitopos de Linfócito B/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Dengue/virologia , Anticorpos Facilitadores/imunologia , Pandemias , Epitopos Imunodominantes/imunologia
4.
Sci Rep ; 14(1): 17187, 2024 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060302

RESUMO

Germline TP53 pathogenic variants can lead to a cancer susceptibility syndrome known as Li-Fraumeni (LFS). Variants affecting its activity can drive tumorigenesis altering p53 pathways and their identification is crucial for assessing individual risk. This study explored the functional impact of TP53 missense variants on its transcription factor activity. We selected seven TP53 missense variants (c.129G > C, c.320A > G, c.417G > T, c.460G > A, c,522G > T, c.589G > A and c.997C > T) identified in Brazilian families at-risk for LFS. Variants were created through site-directed mutagenesis and transfected into SK-OV-3 cells to assess their transcription activation capabilities. Variants K139N and V197M displayed significantly reduced transactivation activity in a TP53-dependent luciferase reporter assay. Additionally, K139N negatively impacted CDKN1A and MDM2 expression and had a limited effect on GADD45A and PMAIP1 upon irradiation-induced DNA damage. Variant V197M demonstrated functional impact in all target genes evaluated and loss of Ser15 phosphorylation. K139N and V197M variants presented a reduction of p21 levels after irradiation. Our data show that K139N and V197M negatively impact p53 functions, supporting their classification as pathogenic variants. This underscores the significance of conducting functional studies on germline TP53 missense variants classified as variants of uncertain significance to ensure proper management of LFS-related cancer risks.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni , Mutação de Sentido Incorreto , Proteína Supressora de Tumor p53 , Síndrome de Li-Fraumeni/genética , Humanos , Proteína Supressora de Tumor p53/genética , Brasil , Proteínas Proto-Oncogênicas c-mdm2/genética , Feminino , Inibidor de Quinase Dependente de Ciclina p21/genética , Masculino , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ativação Transcricional/genética , Proteínas GADD45
5.
Proteins ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031927

RESUMO

Amyloidosis are a group of diseases in which soluble proteins aggregate and deposit in fibrillar conformation extracellularly in tissues. The effectiveness of therapeutic strategies depends on the specific protein involved, being crucial to accurately determine its nature. Moreover, following the diagnosis, the search for the mutation within relatives allows the clinical advice. Here we report the precise diagnosis and explored the possible reasons of the structural pathogenicity for a renal amyloidosis related to a fibrinogen Aα-chain variant. Whole-exome sequencing and GATK calling pipeline were leveraged to characterize the protein variant present in a patient with kidney failure. Bioinformatics strategies were applied to suggest potential explanations of the variants aggregation. Our pipeline allowed the identification of a single-point variant of fibrinogen Aα-chain, which opened the possibility of curative transplantation. In silico structural analysis suggested that the pathogenicity of the variant may be attributed to a heightened susceptibility to yield a peptide prone to deposit as an oligomer with a ß-sheet structure. Exploiting the comprehensive coverage of whole-genome sequencing, we managed to fill a vacant stage in the diagnosis of hereditary amyloidosis and to stimulate the advancement in biomedicine.

6.
Immunol Lett ; 269: 106903, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39069096

RESUMO

OBJECTIVE: To estimate original wild-type BNT162b2 effectiveness against symptomatic Omicron infection among children 5-11 years of age. METHODS: This prospective test-negative, case-control study was conducted in Toledo, southern Brazil, from June 2022 to July 2023. Patients were included if they were aged 5-11 years, sought care for acute respiratory symptoms in the public health system, and were tested for SARS-CoV-2 using reverse transcription polymerase chain reaction. In the primary analysis, we determined the effectiveness of two doses of original wild-type BNT162b2 against symptomatic COVID-19. The reference exposure group was the unvaccinated. RESULTS: A total of 757 children were enrolled; of these, 461 (25 cases; 436 controls) were included in the primary analysis. Mean age was 7.4 years, 49.7 % were female, 34.6 % were obese, and 14.1 % had chronic pulmonary disease. Omicron accounted for 100 % of all identified SARS-CoV-2 variants with BA.5, BQ.1, and XBB.1 accounting for 35.7 %, 21.4 % and 21.4 %, respectively. The adjusted estimate of two-dose vaccine effectiveness against symptomatic Omicron was 3.1 % (95 % CI, -133.7 % to 61.8 %) after a median time between the second dose and the beginning of COVID-19 symptoms of 192.5 days (interquartile range, 99 to 242 days). CONCLUSION: In this study with children 5-11 years of age, a two dose-schedule of original wild-type BNT162b2 was not associated with a significant protection against symptomatic Omicron infection after a median time between the second dose and the beginning of COVID-19 symptoms of 192 days, although the study may have been underpowered to detect a clinically important difference. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov number, NCT05403307 (https://classic. CLINICALTRIALS: gov/ct2/show/NCT05403307).


Assuntos
Vacina BNT162 , COVID-19 , SARS-CoV-2 , Eficácia de Vacinas , Humanos , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/epidemiologia , Feminino , Masculino , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Pré-Escolar , Criança , Estudos Prospectivos , Brasil/epidemiologia , Estudos de Casos e Controles
7.
Front Oncol ; 14: 1395970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978731

RESUMO

Introduction: Approximately 10% of breast cancer (BC) cases result from hereditary causes. Genetic testing has been widely implemented in BC care to determine hereditary cancer syndromes and personalized medicine. Thus, identification of individuals carrying germline pathogenic variants could be useful to provide appropriate prophylactic or screening measures for each BC subtype, however, there are few formal recommendations for genetic testing in this sense so far. In this study, we assessed rare germline variants in a specific group of genes in order to determine the association with human epidermal growth factor 2 enriched (HER2+) BC phenotype through a systematic review and meta-analysis comparing subtypes overexpressing HER2 with other clinically recognized subtypes of BC. This review was registered with PROSPERO (ID: CRD42023447571). Methods: We conducted an online literature search in PubMed (MEDLINE), Scopus, and EMBASE databases. We included original studies that investigated germline variants in HER2+ BC patients and selected the studies that reported only rare and/or pathogenic germline variants. We assessed the risk of bias and quality of the studies using the Joanna Briggs Institute Critical Appraisal checklists and the Modified Newcastle-Ottawa Scale for Genetic Studies, respectively. Considering hormone receptor and HER2 expression status, we compared gene-based risks initially in HR-HER2-, HR+HER2-, HR+HER2+, and HR-HER2+ groups, conducting separate meta-analyses using the random effects model for each comparison, and within them for each gene. Results: Of the total 36 studies describing germline variants, 11 studies provided information on the prevalence of variants in the different clinically relevant BC subtypes and allowed comparisons. Germline variants within eight genes showed significant differences when meta-analyzed between the BC groups: BRCA1, BRCA2, TP53, ATM, CHEK2, PALB2, RAD51C, and BARD1. Notably, TP53, ATM, and CHEK2 germline variants were identified as predisposing factors for HER2+ subtypes, whereas BRCA1, BRCA2, PALB2, RAD51C, and BARD1 germline variants were associated with a predisposition to low HER2 expression. Main concerns about bias and quality assessment were the lack of confounding factors control; and comparability or outcome assessment, respectively. Discussion: Our findings underscore the connection between germline variants and differential expression of the HER2 protein and BC subtypes. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023447571.

8.
Comput Biol Chem ; 112: 108139, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38972100

RESUMO

COVID-19, caused by the SARS-COV-2 virus, induces numerous immunological reactions linked to the severity of the clinical condition of those infected. The surface Spike protein (S protein) present in Sars-CoV-2 is responsible for the infection of host cells. This protein presents a high rate of mutations, which can increase virus transmissibility, infectivity, and immune evasion. Therefore, we propose to evaluate, using immunoinformatic techniques, the predicted epitopes for the S protein of seven variants of Sars-CoV-2. MHC class I and II epitopes were predicted and further assessed for their immunogenicity, interferon-gamma (IFN-γ) inducing capacity, and antigenicity. For B cells, linear and structural epitopes were predicted. For class I MHC epitopes, 40 epitopes were found for the clades of Wuhan, Clade 2, Clade 3, and 20AEU.1, Gamma, and Delta, in addition to 38 epitopes for Alpha and 44 for Omicron. For MHC II, there were differentially predicted epitopes for all variants and eight equally predicted epitopes. These were evaluated for differences in the MHC II alleles to which they would bind. Regarding B cell epitopes, 16 were found in the Wuhan variant, 14 in 22AEU.1 and in Clade 3, 15 in Clade 2, 11 in Alpha and Delta, 13 in Gamma, and 9 in Omicron. When compared, there was a reduction in the number of predicted epitopes concerning the Spike protein, mainly in the Delta and Omicron variants. These findings corroborate the need for updates seen today in bivalent mRNA vaccines against COVID-19 to promote a targeted immune response to the main circulating variant, Omicron, leading to more robust protection against this virus and avoiding cases of reinfection. When analyzing the specific epitopes for the RBD region of the spike protein, the Omicron variant did not present a B lymphocyte epitope from position 390, whereas the epitope at position 493 for MHC was predicted only for the Alpha, Gamma, and Omicron variants.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , Brasil , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos/imunologia , Epitopos/química , Interferon gama/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/genética
9.
Sci Rep ; 14(1): 17378, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075179

RESUMO

Skin pigmentation is negatively associated with circulating vitamin D (VD) concentration. Therefore, genetic factors involved in skin pigmentation could influence the risk of vitamin D deficiency (VDD). We evaluated the impact genetic variants related to skin pigmentation on VD in Mexican population. This cross-sectional analysis included 848 individuals from the Health Worker Cohort Study (ratio males to females ~ 1:3). Eight genetic variants: rs16891982 (SLC45A2), rs12203592 (IRF4), rs1042602 and rs1126809 (TYR), rs1800404 (OCA2), rs12913832 (HERC2), rs1426654 (SLC24A5), and rs2240751 (MFSD12); involved in skin pigmentation were genotyped. Skin pigmentation was assessed by self-report. Linear and logistic regression were used to assess the association between the variants of interest and VD and VDD, as appropriate. In our study, eight genetic variants were associated with skin pigmentation. A genetic risk score built with the variants rs1426654 and rs224075 was associated with lower VD levels (ß = - 1.38, 95% CI - 2.59, - 0.17, p = 0.025). Nevertheless, when examining gene-gene interactions, we observed that rs2240751 × rs12203592 were associated with VD levels (P interaction = 0.021). Whereas rs2240751 × rs12913832 (P interaction = 0.0001) were associated with VDD. Our results suggest that skin pigmentation-related gene variants are associated with lower VD levels in Mexican population. These results underscore the importance of considering genetic interactions when assessing the impact of genetic polymorphisms on VD levels.


Assuntos
Polimorfismo de Nucleotídeo Único , Pigmentação da Pele , Deficiência de Vitamina D , Vitamina D , Humanos , Masculino , Feminino , México , Pigmentação da Pele/genética , Deficiência de Vitamina D/genética , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/epidemiologia , Vitamina D/sangue , Vitamina D/análogos & derivados , Adulto , Pessoa de Meia-Idade , Estudos Transversais , Predisposição Genética para Doença
10.
Trop Med Infect Dis ; 9(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058182

RESUMO

The persistence of the human papillomavirus type 16 (HPV16) infection on the cervical epithelium contributes to the progression of cervical cancer. Studies have demonstrated that HPV16 genetic variants may be associated with different risks of developing cervical cancer. However, the E5 oncoprotein of HPV16, which is related to several cellular mechanisms in the initial phases of the infection and thus contributes to carcinogenesis, is still little studied. Here we investigate the HPV16 E5 oncogene variants to assess the effects of different mutations on the biological function of the E5 protein. We detected and analyzed the HPV16 E5 oncogene polymorphisms and their phylogenetic relationships. After that, we proposed a tertiary structure analysis of the protein variants, preferential codon usage, and functional activity of the HPV16 E5 protein. Intra-type variants were grouped in the lineages A and D using in silico analysis. The mutations in E5 were located in the T-cell epitopes region. We therefore analyzed the interference of the HPV16 E5 protein in the NF-kB pathway. Our results showed that the variants HPV16E5_49PE and HPV16E5_85PE did not increase the potential of the pathway activation capacity. This study provides additional knowledge about the mechanisms of dispersion of the HPV16 E5 variants, providing evidence that these variants may be relevant to the modulation of the NF-κB signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA