Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Foods ; 12(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372601

RESUMO

Meat is an important part of the food pyramid in Mexico, to such an extent that it is included in the basic food basket. In recent years, there has been great interest in the application of so-called emerging technologies, such as high-intensity ultrasound (HIU), to modify the characteristics of meat and meat products. The advantages of the HIU in meat such as pH, increased water-holding capacity, and antimicrobial activity are well documented and conclusive. However, in terms of meat tenderization, the results are confusing and contradictory, mainly when they focus on three HIU parameters: acoustic intensity, frequency, and application time. This study explores via a texturometer the effect of HIU-generated acoustic cavitation and ultrasonoporation in beef (m. Longissimus dorsi). Loin-steak was ultrasonicated with the following parameters: time tHIU = 30 min/each side; frequency fHIU = 37 kHz; acoustic intensity IHIU = ~6, 7, 16, 28, and 90 W/cm2. The results showed that acoustic cavitation has a chaotic effect on the loin-steak surface and thickness of the rib-eye due to Bjerknes force, generating shear stress waves, and acoustic radiation transmittance via the internal structure of the meat and the modification of the myofibrils, in addition to the collateral effect in which the collagen and pH generated ultrasonoporation. This means that HIU can be beneficial for the tenderization of meat.

2.
J Fungi (Basel) ; 8(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36354884

RESUMO

Shock waves, as used in medicine, can induce cell permeabilization, genetically transforming filamentous fungi; however, little is known on the interaction of shock waves with the cell wall. Because of this, the selection of parameters has been empirical. We studied the influence of shock waves on the germination of Aspergillus niger, to understand their effect on the modulation of four genes related to the growth of conidia. Parameters were varied in the range reported in protocols for genetic transformation. Vials containing conidia in suspension were exposed to either 50, 100 or 200 single-pulse or tandem shock waves, with different peak pressures (approximately 42, 66 and 83 MPa). In the tandem mode, three delays were tested. To equalize the total energy, the number of tandem "events" was halved compared to the number of single-pulse shock waves. Our results demonstrate that shock waves do not generate severe cellular effects on the viability and germination of A. niger conidia. Nevertheless, increase in the aggressiveness of the treatment induced a modification in four tested genes. Scanning electron microscopy revealed significant changes to the cell wall of the conidia. Under optimized conditions, shock waves could be used for several biotechnological applications, surpassing conventional techniques.

3.
Molecules ; 26(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34500551

RESUMO

The coupling of innovative technologies has emerged as a smart alternative for the process intensification of bioactive compound extraction from plant matrices. In this regard, the development of hybridized techniques based on the low-frequency and high-power ultrasound and high-pressure technologies, such as supercritical fluid extraction, pressurized liquids extraction, and gas-expanded liquids extraction, can enhance the recovery yields of phytochemicals due to their different action mechanisms. Therefore, this paper reviewed and discussed the current scenario in this field where ultrasound-related technologies are coupled with high-pressure techniques. The main findings, gaps, challenges, advances in knowledge, innovations, and future perspectives were highlighted.


Assuntos
Compostos Fitoquímicos/química , Tecnologia/métodos , Animais , Plantas/química , Ondas Ultrassônicas
4.
Food Res Int ; 140: 110048, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648273

RESUMO

This study proposes an update for the jabuticaba processing chain to obtain valuable coproducts from jabuticaba peels. High-intensity ultrasound (HIUS) technology was evaluated as a more efficient extraction process to obtain two high added-value coproducts: pectin and an anthocyanins-rich extract. The HIUS-assisted extraction of bioactive compounds like anthocyanins from the jabuticaba peels was evaluated. The effects of ultrasound intensity (1.1, 3.7, 7.3, and 13.0 W/cm2) and solvent composition concerning water/ethanol ratio (0, 25, 50, 75, and 100 g water/100 g) were examined. One-step HIUS processing promoted the best recovery of bioactive compounds at an ultrasound intensity of 3.7 W/cm2 and 50 g water/100 g, thus proofing the interaction between ultrasound intensity and the solvent composition has a strong influence on the extraction efficiency of the groups of compounds studied and in the jabuticaba peel antioxidant potential. The confocal laser scanning microscopy confirmed bioactive compounds' exhaustion in the dried jabuticaba peel after the HIUS processing, proving its best recovery. The jabuticaba peel extract exhibited an intense reddish color typical of anthocyanin-rich products at acid pH (4.5). The HIUS technology turned out a promising way to recover these valuable phenolic compounds as a quick, relatively inexpensive, and simple technology that improves the yields and decreases the costs and environmental impacts compared to conventional extraction processes.


Assuntos
Antocianinas , Extratos Vegetais , Antioxidantes , Fenóis , Solventes
5.
Ultrason Sonochem ; 67: 105185, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32474185

RESUMO

The aim of this study was to evaluate the effects of non-thermal and thermal high-intensity ultrasound (HIUS) treatment on the microbial and enzymatic inactivation, physicochemical properties, and kinetic stability of the raw milk by applying different energy densities (1, 3, 5, and 7 kJ/mL). Two HIUS treatments were evaluated based on different nominal powers, named HIUS-A and HIUS-B, using 100 W and 475 W, respectively. HIUS-A treatment was non-thermal processing while HIUS-B was a thermal treatment only for the energy densities of 5 and 7 kJ/mL since the final temperature was above 70 °C. The HIUS-B treatment showed to be more efficient. Log reductions up to 3.9 cycles of aerobic mesophilic heterotrophic bacteria (AMHB) were achieved. Significant reductions of the fat globule size, with diameters lower than 1 µm, better color parameters, and kinetic stability during the storage were observed. Also, HIUS-B treatment inactivated the alkaline phosphatase and lactoperoxidase. The HIUS-B treatment at 3 kJ/mL worked below 57 °C being considered a border temperature since it did not cause unwanted physicochemical effects. Furthermore, a microbial inactivation of 1.8 ± 0.1 log cycles of AMHB was observed. A proper inactivation of only the Alkaline phosphatase and a significant reduction of the fat globules sizes, which kept the milk kinetically stable during storage was achieved.


Assuntos
Leite/química , Sonicação , Animais , Bovinos , Temperatura Alta , Cinética
6.
Ultrason Sonochem ; 66: 105068, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32224449

RESUMO

This study presents the production of a novel natural blue colorant obtained from the cross-linking between milk proteins and genipin assisted by low-frequency and high-power ultrasound technology. Genipin was extracted from unripe Genipa americana L. using milk as a solvent. Also, milk colloidal system was used as a reaction medium and carrier for the blue color compounds. The effects of ultrasound nominal power (100, 200, 300, and 400 W) on the blue color formation kinetics in milk samples were evaluated at 2, 24, and 48 h of cold storage in relation to their free-genipin content and color parameters. In addition, Fourier transform infrared (FTIR) spectrum, droplet size distribution, microstructure, and kinetic stability of the blue colorant-loaded milk samples were assessed. Our results have demonstrated that the ultrasound technology was a promising and efficient technique to obtain blue colorant-loaded milk samples. One-step acoustic cavitation assisted the genipin extraction and its diffusion into the milk colloidal system favoring its cross-linking with milk proteins. Ultrasound process intensification by increasing the nominal power promoted higher genipin recovery resulting in bluer milk samples. However, the application of high temperatures associated with intensified acoustic cavitation processing favored the occurrence of non-enzymatic browning due to the formation of complex melanin substances from the Maillard reaction. Also, the blue milk samples were chemically stable since their functional groups were not modified after ultrasound processing. Likewise, all blue colorant-loaded milk samples were kinetically stable during their cold storage. Therefore, a novel natural blue colorant with high-potential application in food products like ice creams, dairy beverages, bakery products, and candies was produced.


Assuntos
Produtos Biológicos/química , Corantes/química , Leite/química , Rubiaceae/química , Ondas Ultrassônicas , Animais , Cinética , Solventes/química
7.
Ultrason Sonochem ; 63: 104928, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31952002

RESUMO

This study evaluated the influence of the high-intensity ultrasound (HIUS) technology on the quality parameters of a model dairy beverage (chocolate whey beverage), operating under the same energy density (5000 J/mL), but applied at different ways. Two processes were performed varying nominal power and processing time: HIUS-A (160 W and 937 s), and HIUS-B (720 W and 208 s). Our objective was to understand how different modes of application of the same HIUS energy density could influence the microstructure, droplet size distribution, zeta potential, phase separation kinetic, color parameters and mineral profile of the chocolate whey beverage. The results demonstrated that the different modes of application of the same HIUS energy density directly influenced the final quality of the product, resulting in whey beverages with distinct physical and microstructural characteristics. The HIUS-B processing was characterized as a thermal processing, since the final processing temperature reached 71 °C, while the HIUS-A processing was a non-thermal process, reaching a final temperature of 34 °C. Moreover, HIUS-B process greatly reduced the droplet size and increased the lightness value in relation to the HIUS-A processing. Both treatments resulted in whey beverages with similar phase separation kinetics and were more stable than the untreated sample. The HIUS processes did not modify the mineral content profile. Overall, the study emphasizes the versatility of the HIUS technology, highlighting that the processing must not be based only on the applied energy density, since different powers and processing times produce dairy beverages with distinct characteristics.


Assuntos
Bebidas/análise , Leite/química , Sonicação/métodos , Soro do Leite/química , Animais , Controle de Qualidade
8.
Ultrason Sonochem ; 61: 104809, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31670252

RESUMO

Phenolic compounds, obtained from plants are important in the food, biomaterial and pharmaceutical industries; however current extraction methods, such as Soxhlet (solid-liquid) extraction, liquid-liquid extraction, microwave-assisted extraction, and ultrasonic extraction (USE), have the disadvantages of large processing times, contamination by solvents, and degradation of analytes. This study demonstrates that shock wave-assisted extraction can be used as a more efficient, eco-friendly and rapid method. Extraction of powdered samples of Eysenhardtia polystachia heartwood, a plant with high concentration of phenolic compounds, exposed to different doses of underwater shock waves, was compared with the conventional methods. Our results revealed that shock wave-assisted extraction (1500 shock waves with a peak positive pressure of approximately 88 MPa) produced 34.54% and 31.95% higher contents than Soxhlet and USE, respectively. Extraction times using shock waves were much shorter than with all other methods tested, proving that it is an attractive method to obtain both phenolic acids and flavonoids without the need for organic solvents. Furthermore, shock waves produced a significantly higher content of total reducing sugars than Soxhlet extraction and less phenolic acids which gives the insight of a more selective extraction of components.


Assuntos
Fabaceae/química , Flavonoides/isolamento & purificação , Ondas Ultrassônicas , Hidroxibenzoatos/isolamento & purificação , Extração Líquido-Líquido , Extratos Vegetais/química
9.
Pharmaceutics ; 11(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757093

RESUMO

In the current study, poly 4-mercaptophenyl methacrylate-carbon nano-onions (PMPMA-CNOs = f-CNOs) reinforced natural protein (zein) composites (zein/f-CNOs) are fabricated using the acoustic cavitation technique. The influence of f-CNOs inclusion on the microstructural properties, morphology, mechanical, cytocompatibility, in-vitro degradation, and swelling behavior of the hydrogels are studied. The tensile results showed that zein/f-CNOs hydrogels fabricated by the acoustic cavitation system exhibited good tensile strength (90.18 MPa), compared with the hydrogels fabricated by the traditional method and only microwave radiation method. It reveals the magnitude of physisorption and degree of colloidal stability of f-CNOs within the zein matrix under acoustic cavitation conditions. The swelling behaviors of hydrogels were also tested and improved results were noticed. The cytotoxicity of hydrogels was tested with osteoblast cells. The results showed good cell viability and cell growth. To explore the efficacy of hydrogels as drug transporters, 5-fluorouracil (5-FU) release was measured under gastric and intestinal pH environment. The results showed pH-responsive sustained drug release over 15 days of study, and pH 7.4 showed a more rapid drug release than pH 2.0 and 4.5. Nonetheless, all the results suggest that zein/f-CNOs hydrogel could be a potential pH-responsive drug transporter for a colon-selective delivery system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA