Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chemosphere ; 313: 137424, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495985

RESUMO

The efficacy of novel polycarbonate ultrafiltration, aluminum oxide nanoparticle (Al2O3-NPs) volume fraction, temperature, and water/ethylene glycol (EG) ratio were evaluated to determine the thermophysical properties of the membrane. 5%-10% of Al2O3-NPs have been added to the PC. A machine learning approach was used to compare the volume fraction of Al2O3-NPs, the temperature, and the water-to-ethylene glycol (EG) ratio. To determine the impact of Al2O3-NPs loading on the Response Surface Method (RSM), DOE, ANOVA, ANN, MLP, and NSGA-II, the number of aluminum oxide nanoparticles (Al2O3-NPs), temperature, and water/ethylene glycol (EG) on membranes in PC ultrafiltration are evaluated. Based on the Relative Thermal Conductivity Model (RSM), the regression coefficient of Al2O3 in water and EG was 0.9244 and 0.9170 with adjusted regression coefficients. A higher concentration of EG enhances the thermal conductivity of the membrane when the effective parameters are considered. The effect of temperature on the relative viscosity of the membrane led to the conclusion that Al2O3 water/EG can cool at high temperatures while providing no viscosity change. When Al2O3 is dissolved in water and EG, more EG is necessary to optimize the mode of reactivity. Using the MLP model, the calculated R-value is 0.9468, the MSE is 0.001752989 (mean square error), and the MAE is 0.01768558 (mean absolute error). RSM predicted the average thermal conductivity behavior of nanofluid better. The ANN model, however, has proven to be more effective than the RSM in simulating the relative viscosity of nanofluids. The NSGA-II optimized results showed that the minimum relative viscosity and maximum coefficient of thermal conductivity occurred at the lowest water ratio and maximum temperature.


Assuntos
Nanopartículas , Água , Temperatura , Ultrafiltração , Óxido de Alumínio , Etilenoglicóis
2.
Rev. estomatol. Hered ; 32(1): 61-67, ene.-mar 2022. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1389063

RESUMO

RESUMEN El tratamiento de la dentina como paso previo al procedimiento de adhesión tiene como propósito mejorar las condiciones del sustrato mejorando la fuerza de unión entre la superficie dentaria y el material de restauración, promoviendo mayor longevidad y estabilidad de la restauración. El objetivo del estudio fue realizar una revisión de la literatura que describe las propiedades de diferentes agentes acondicionantes de la dentina. Se realizó una revisión de la literatura incluyendo trabajos publicados entre el 2014 a 2020, de bases de datos médicas como PubMeb, SciELO y ScienceDirect; en idioma inglés, español y portugués. Se seleccionaron un total de 20 artículos que cumplían los criterios de inclusión. Se ha identificado en la literatura el uso de diversos agentes pre tratamiento de la dentina, principalmente agentes químicos como el hipoclorito de sodio, clorhexidina, el ácido etilenodiaminatetraacético (EDTA), las nanopartículas metálicas y las técnicas mecánicas como la abrasión por aire con óxido de aluminio y bicarbonato de sodio.


ABSTRACT Dentin treatment as a prior step to the adhesion procedure is intended to improve the substrate condition by improving the bonding strength between the tooth surfaces and the restorative material, promoting greater longevity and stability of the restoration. The objective of the study was to carry out a review of the literature that describes the properties of different conditioning agents of dentin. A review of the literature was carried out, including works published between 2014 and 2020, from medical databases such as PubMeb, SciELO and ScienceDirect; in English, Spanish and Portuguese. A total of 20 articles that met the inclusion criteria were selected. The use of various dentin pre-treatment agents has been identified in the literature, mainly chemical agents such as sodium hypochlorite, chlorhexidine, ethylenediaminetetraacetic acid (EDTA), metallic nanoparticles and mechanical techniques such as air abrasion. with aluminum oxide and baking soda.

3.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835803

RESUMO

Highly ordered nanostructure arrays have attracted wide attention due to their wide range of applicability, particularly in fabricating devices containing scalable and controllable junctions. In this work, highly ordered carbon nanotube (CNT) arrays grown directly on Si substrates were fabricated, and their electronic transport properties as a function of wall thickness were explored. The CNTs were synthesized by chemical vapor deposition inside porous alumina membranes, previously fabricated on n-type Si substrates. The morphology of the CNTs, controlled by the synthesis parameters, was characterized by electron microscopies and Raman spectroscopy, revealing that CNTs exhibit low crystallinity (LC). A study of conductance as a function of temperature indicated that the dominant electric transport mechanism is the 3D variable range hopping. The electrical transport explored by I-V curves was approached by an equivalent circuit based on a Schottky diode and resistances related to the morphology of the nanotubes. These junction arrays can be applied in several fields, particularly in this work we explored their performance in gas sensing mode and found a fast and reliable resistive response at room temperature in devices containing LC-CNTs with wall thickness between 0.4 nm and 1.1 nm.

4.
Micromachines (Basel) ; 12(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063804

RESUMO

The chemical, structural, morphological, and optical properties of Al-doped TiO2 thin films, called TiO2/Al2O3 nanolaminates, grown by plasma-enhanced atomic layer deposition (PEALD) on p-type Si <100> and commercial SLG glass were discussed. High-quality PEALD TiO2/Al2O3 nanolaminates were produced in the amorphous and crystalline phases. All crystalline nanolaminates have an overabundance of oxygen, while amorphous ones lack oxygen. The superabundance of oxygen on the crystalline film surface was illustrated by a schematic representation that described this phenomenon observed for PEALD TiO2/Al2O3 nanolaminates. The transition from crystalline to amorphous phase increased the surface hardness and the optical gap and decreased the refractive index. Therefore, the doping effect of TiO2 by the insertion of Al2O3 monolayers showed that it is possible to adjust different parameters of the thin-film material and to control, for example, the mobility of the hole-electron pair in the metal-insulator-devices semiconductors, corrosion protection, and optical properties, which are crucial for application in a wide range of technological areas, such as those used to manufacture fluorescence biosensors, photodetectors, and solar cells, among other devices.

5.
Chemosphere ; 268: 128820, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33199112

RESUMO

Space launchers often use aluminized-solid fuel ("propergol") as propellant and its combustion releases tons of Al2O3 and HCl that sink in terrestrial and aquatic environments, polluting and decreasing water pH. We studied the impact of these events on the biochemical/physiological performance of the freshwater shrimp Macrobrachium jelskii, with wild specimens collected from a non-impacted site in French Guiana. In the laboratory, shrimps were exposed for one week to: i) undisturbed conditions; ii) Al2O3 exposure (0.5 mg L-1) at normal pH (6.6); iii) decreased pH (4.5) (mimicking HCl release in the environment) with no Al2O3; or iv) Al2O3 0.5 mg L-1 and pH 4.5, representing the average conditions found in the water bodies around the Ariane 5 launch pad. Results showed that shrimps bioaccumulated aluminium (Al) regardless of water pH. The combined effect of Al2O3 and low pH caused the most impact: acetylcholinesterase and carboxylesterase activities decreased, indicating neurotoxicity and reduced detoxification capacity, respectively. Animal respiration was enhanced with Al2O3 and pH variations alone, but the synergic interaction of both stressors caused respiration to decrease, suggesting metabolic depression. Oxidative damage followed a similar pattern to respiration rates across conditions, suggesting free radical-mediation in Al toxicity. Antioxidant activities varied among enzymes, with glutathione reductase being the most impacted by Al2O3 exposure. This study shows the importance of addressing space ports' impact on the environment, setting the bases for selecting the most appropriate biomarkers for future monitoring programs using a widespread and sensitive crustacean in the context of an increasing space-oriented activity across the world.


Assuntos
Água Doce , Poluentes Químicos da Água , Animais , Antioxidantes , Guiana Francesa , Invertebrados , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
6.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212989

RESUMO

Nickel nanopillar arrays were electrodeposited onto silicon substrates using porous alumina membranes as a template. The characterization of the samples was done by scanning electron microscopy, X-ray diffraction, and alternating force gradient magnetometry. Ni nanostructures were directly grown on Si by galvanostatic and potentiostatic electrodeposition techniques in three remarkable charge transfer configurations. Differences in the growth mechanisms of the nanopillars were observed, depending on the deposition method. A high correlation between the height of the nanopillars and the charge synthesis was observed irrespective of the electrochemical technique. The magnetization measurements demonstrated a main dependence with the height of the nanopillars. The synthesis of Ni nanosystems with a controllable aspect ratio provides an effective way to produce well-ordered networks for wide scientific applications.


Assuntos
Óxido de Alumínio/química , Galvanoplastia , Níquel/química , Silício/química , Campos Magnéticos , Porosidade , Difração de Raios X
7.
J Toxicol Environ Health A ; 83(9): 363-377, 2020 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414304

RESUMO

The objective of this study was to examine the cytotoxic effects of binary mixtures of Al2O3 and ZnO NPs using mouse fibroblast cells (L929) and human bronchial epithelial cells (BEAS-2B) as biological test systems. The synergistic, additive, or antagonistic behavior of the binary mixture was also investigated. In toxicity experiments, cellular morphology, mitochondrial function (MTT assay), apoptosis, nuclear size and shape, clonogenic assays, and damage based upon oxidative stress parameters were assessed under control and NPs exposure conditions. Although Abbott modeling results provided no clear evidence of the binary mixture of Al2O3 and ZnO NPs exhibiting synergistic toxicity, some specific assays such as apoptosis, nuclear size and shape, clonogenic assay, activities of antioxidant enzymatic enzymes catalase, superoxide dismutase, and levels of glutathione resulted in enhanced toxicity for the mixtures with 1 and 1.75 toxic units (TU) toward both cell types. Data demonstrated that co-presence of Al2O3 and ZnO NPs in the same environment might lead to more realistic environmental conditions. Our findings indicate cytotoxicity of binary mixtures of Al2O3 and ZnO NPs produced greater effects compared to toxicity of either individual compound.


Assuntos
Óxido de Alumínio/toxicidade , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/toxicidade , Animais , Humanos , Camundongos , Modelos Animais
8.
Environ Res ; 182: 108987, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31812936

RESUMO

Aluminum oxide nanoparticles (Al2O3 NPs) can be found in different crystalline phases, and with the emergence of nanotechnology there has been a rapid increase in the demand for Al2O3 NPs in different engineering areas and for consumer products. However, a careful evaluation of the potential environmental and human health risks is required to assess the implications of the release of Al2O3 NPs into the environment. Thus, the objective of this study was to investigate the toxicity of two crystalline phases of Al2O3 NPs, alpha (α-Al2O3 NPs) and eta (η-Al2O3 NPs), toward Daphnia magna and evaluate the risk to the aquatic ecology of Al2O3 NPs with different crystalline phases, based on a probabilistic approach. Different techniques were used for the characterization of the Al2O3 NPs. The toxicity toward Daphnia magna was assessed based on multiple toxicological endpoints, and the probabilistic species sensitivity distribution (PSSD) was used to estimate the risk of Al2O3 NPs to the aquatic ecology. The results obtained verify the toxic potential of the NPs toward D. magna even in sublethal concentrations, with a more pronounced effect being observed for η-Al2O3 NPs. The toxicity is associated with an increase in the reactive oxygen species (ROS) content and deregulation of antioxidant enzymatic/non-enzymatic enzymes (CAT, SOD and GSH). In addition, changes in MDA levels were observed, indicating that D. magna was under oxidative stress. The most prominent chronic toxic effects were observed in the organisms exposed to η-Al2O3 NPs, since the lowest LOEC was 3.12 mg/L for all parameters, while for α-Al2O3 NPs the lowest LOEC was 6.25 mg/L for longevity, growth and reproduction. However, the risk assessment results indicate that, based on a probabilistic approach, Al2O3 NPs (alpha, gamma, delta, eta and theta) only a very limited risk to organisms in surface waters.


Assuntos
Óxido de Alumínio , Nanopartículas Metálicas , Poluentes Químicos da Água , Óxido de Alumínio/toxicidade , Animais , Daphnia , Humanos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Medição de Risco , Poluentes Químicos da Água/toxicidade
9.
Toxicol In Vitro ; 61: 104596, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31295524

RESUMO

The role of the crystalline structure on the toxicity of two phases of Al2O3 NPs, alpha (α-Al2O3 NPs) and eta (η-Al2O3 NPs), was investigated in this study. Different techniques were employed for the characterization of the Al2O3 NPs and multiple toxicological endpoints were used to assess the toxicity toward mouse neuroblastoma (N2A) and human bronchial epithelial (BEAS-2B) cells. Based on the results of the multiple toxicological endpoints, revealed differences in the toxic potential results for α-Al2O3 NPs and η-Al2O3 NPs, with the latter showing a more pronounced effect. These effects could be due to the high uptake of the η-Al2O3 NPs in the cytoplasmic vesicles, as evidenced by TEM and ICP-MS. Hence, the results demonstrate the potential toxicity of both α-Al2O3 NPs and η-Al2O3 NPs, although the N2A and BEAS-2B cells showed greater susceptibility toward η-Al2O3 NPs. Thus, our study demonstrates the important role of the crystalline structure in relation to the nanotoxicity of Al2O3 NPs.


Assuntos
Óxido de Alumínio/toxicidade , Nanopartículas/toxicidade , Óxido de Alumínio/química , Animais , Apoptose/efeitos dos fármacos , Brônquios/citologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Nanopartículas/química , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
10.
ACS Comb Sci ; 21(5): 370-379, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30892872

RESUMO

The present study reports a two-level multivariate analysis to optimize the production of anodized aluminum oxide (Al2O3) dielectric films for zinc oxide thin-film transistors (TFTs). Fourteen performance parameters were measured and analysis of variance (ANOVA) of the combined responses has been applied to identify how the Al2O3 dielectric fabrication process influences the electrical properties of the TFTs. Using this approach, the levels for the manufacturing factors to achieve optimal overall device performance have been identified and ranked. The cross-checked analysis of the TFT performance parameters demonstrated that the appropriate control of the anodization process can have a higher impact on TFT performance than the use of traditional methods of surface treatment of the dielectric layer. Flexible electronics applications are expected to grow substantially over the next 10 years. Given the complexity and challenges of new flexible electronics components, this "multivariate" approach could be adopted more widely by the industry to improve the reliability and performance of such devices.


Assuntos
Óxido de Alumínio/química , Transistores Eletrônicos , Óxido de Zinco/química , Técnicas de Química Combinatória , Técnicas Eletroquímicas , Eletrodos , Análise Multivariada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA