Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Biochem Pharmacol ; 229: 116480, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128587

RESUMO

Alamandine (ALA) exerts protective effects similar to angiotensin (Ang) (1-7) through Mas-related G protein-coupled receptor type D receptor (MrgDR) activation, distinct from Mas receptor (MasR). ALA induces anti-inflammatory effects in mice but its impact in human macrophages remains unclear. We aimed to investigate the anti-inflammatory effects of ALA in human macrophages. Interleukin (IL)-6 and IL-1ß were measured by ELISA in human THP-1 macrophages and human monocyte-derived macrophages exposed to lipopolysaccharide (LPS). Consequences of MasR-MrgDR heteromerization were investigated in transfected HEK293T cells. ALA decreased IL-6 and IL-1ß secretion in LPS-activated THP-1 macrophages. The ALA-induced decrease in IL-6 but not in IL-1ß was prevented by MasR blockade and MasR downregulation, suggesting MasR-MrgDR interaction. In human monocyte-derived M1 macrophages, ALA decreased IL-1ß secretion independently of MasR. MasR-MrgDR interaction was confirmed in THP-1 macrophages, human monocyte-derived macrophages, and transfected HEK293T cells. MasR and MrgDR formed a constitutive heteromer that was not influenced by ALA. ALA promoted Akt and ERK1/2 activation only in cells expressing MasR-MrgDR heteromers, and this effect was prevented by MasR blockade. While Ang-(1-7) reduced cellular proliferation in MasR -but not MrgDR- expressing cells, ALA antiproliferative effect was elicited in cells expressing MasR-MrgDR heteromers. ALA also induced an antiproliferative response in THP-1 cells and this effect was abolished by MasR blockade, reinforcing MasR-MrgDR interaction. MasR-MrgDR heteromerization is crucial for ALA-induced anti-inflammatory and antiproliferative responses in human macrophages. This study broaden our knowledge of the protective axis of the RAS, thus enabling novel therapeutic approaches in inflammatory-associated diseases.

2.
Mol Biol Rep ; 51(1): 775, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904729

RESUMO

Acute leukemias (ALs) are the most common cancers in pediatric population. There are two types of ALs: acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Some studies suggest that the Renin Angiotensin System (RAS) has a role in ALs. RAS signaling modulates, directly and indirectly, cellular activity in different cancers, affecting tumor cells and angiogenesis. Our review aimed to summarize the role of RAS in ALs and to explore future perspectives for the treatment of these hematological malignancies by modulating RAS molecules. The database including Pubmed, Scopus, Cochrane Library, and Scielo were searched to find articles about RAS molecules in ALL and in pediatric patients. The search terms were "RAS", "Acute Leukemia", "ALL", "Angiotensin-(1-7)", "Pediatric", "Cancer", "Angiotensin II", "AML". In the bone marrow, RAS has been found to play a key role in blood cell formation, affecting several processes including apoptosis, cell proliferation, mobilization, intracellular signaling, angiogenesis, fibrosis, and inflammation. Local tissue RAS modulates tumor growth and metastasis through autocrine and paracrine actions. RAS mainly acts via two molecules, Angiotensin II (Ang II) and Angiotensin (1-7) [Ang-(1-7)]. While Ang II promotes tumor cell growth and stimulates angiogenesis, Ang-(1-7) inhibits the proliferation of neoplastic cells and the angiogenesis, suggesting a potential therapeutic role of this molecule in ALL. The interaction between ALs and RAS reveals a complex network of molecules that can affect the hematopoiesis and the development of hematological cancers. Understanding these interactions could pave the way for innovative therapeutic approaches targeting RAS components.


Assuntos
Angiotensina II , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/fisiologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Angiotensina II/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Transdução de Sinais , Angiotensina I/metabolismo , Neovascularização Patológica/metabolismo , Animais , Fragmentos de Peptídeos/metabolismo
3.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500680

RESUMO

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Assuntos
Neoplasias do Colo , Lipossomos , Nanopartículas , Microambiente Tumoral , Animais , Camundongos , Ligantes , Apoptose , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fator de Necrose Tumoral alfa , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
4.
Biomedicines ; 12(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397857

RESUMO

Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.

5.
Am J Med Sci ; 367(2): 128-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984736

RESUMO

Cardiovascular diseases (CVD) are the main causes of death in hemodialysis patients, representing a public health challenge. We investigated the effect of different antihypertensive treatments on circulating levels of renin-angiotensin system (RAS) components in end-stage renal disease (ESRD) patients on hemodialysis. ESRD patients were grouped following the prescribed antihypertensive drugs: ß-blocker, ß-blocker+ACEi and ß-blocker+AT1R blocker. ESDR patients under no antihypertensive drug treatment were used as controls. Blood samples were collected before hemodialysis sessions. Enzymatic activities of the angiotensin-converting enzymes ACE and ACE2 were measured through fluorescence assays and plasma concentrations of the peptides Angiotensin II (Ang II) and Angiotensin-(1-7) [Ang-(1-7)] were quantified using mass spectrometry (LC-MS/MS). ACE activity was decreased only in the ß-blocker+ACEi group compared to the ß-blocker+AT1R, while ACE2 activity did not change according to the antihypertensive treatment. Both Ang II and Ang-(1-7) levels also did not change according to the antihypertensive treatment. We concluded that the treatment of ESRD patients on hemodialysis with different antihypertensive drugs do not alter the circulating levels of RAS components.


Assuntos
Anti-Hipertensivos , Falência Renal Crônica , Humanos , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Enzima de Conversão de Angiotensina 2/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Sistema Renina-Angiotensina , Peptidil Dipeptidase A/metabolismo , Peptídeos/farmacologia , Falência Renal Crônica/tratamento farmacológico , Angiotensina II/farmacologia , Fragmentos de Peptídeos/metabolismo , Diálise Renal
6.
Phys Sportsmed ; 52(1): 65-76, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36752064

RESUMO

BACKGROUND: Supplementation with Angiotensin-(1-7) [(Ang-1-7)] has received considerable attention due to its possible ergogenic effects on physical performance. The effects of a single dose of Ang-(1-7) on the performance of mountain bike (MTB) athletes during progressive load tests performed until the onset of voluntary fatigue have previously been demonstrated. This study tested the effects of Ang-(1-7) in two different exercise protocols with different metabolic demands: aerobic (time trial) and anaerobic (repeated sprint). METHODS: Twenty one male recreational athletes were given capsules containing an oral formulation of HPßCD-Ang-(1-7) (0.8 mg) and HPßCD-placebo (only HPßCD) over a 7-day interval; a double-blind randomized crossover design was used. Physical performance was examined using two protocols: a 20-km cycling time trial or 4 × 30-s repeated all-out sprints on a leg cycle ergometer. Data were collected before and after physical tests to assess fatigue parameters, and included lactate levels, and muscle activation during the sprint protocol as evaluated by electromyography (EMG); cardiovascular parameters: diastolic and systolic blood pressure and heart rate; and performance parameters, time to complete (time trial), maximum power and mean power (repeated sprint). RESULTS: Supplementation with an oral formulation of HPßCD-Ang-(1-7) reduced basal plasma lactate levels and promoted the maintenance of plasma glucose levels after repeated sprints. Supplementation with HPßCD-Ang-(1-7) also increased baseline plasma nitrite levels and reduced resting diastolic blood pressure in a time trial protocol. HPßCD-Ang-(1-7) had no effect on the time trial or repeat sprint performance, or on the EMG recordings of the vastus lateralis and vastus medialis. CONCLUSIONS: Supplementation with HPßCD-Ang-(1-7) did not improve physical performance in time trial or in repeated sprints; however, it promoted the maintenance of plasma glucose and lactate levels after the sprint protocol and at rest, respectively. In addition, HPßCD-Ang-(1-7) also increased resting plasma nitrite levels and reduced diastolic blood pressure in the time trial protocol. TRIAL REGISTRATION: RBR-2nbmpbc, registered January 6th, 2023. The study was prospectively registered.


Assuntos
Angiotensina I , Desempenho Atlético , Nitritos , Fragmentos de Peptídeos , Humanos , Masculino , Estudos Cross-Over , 2-Hidroxipropil-beta-Ciclodextrina , Ciclismo/fisiologia , Glicemia , Lactatos , Suplementos Nutricionais , Atletas , Fadiga
7.
Clin Sci (Lond) ; 137(16): 1249-1263, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37527493

RESUMO

BACKGROUND: An unbalance in the renin-angiotensin (Ang) system (RAS) between the Ang II/AT1 and Ang-(1-7)/Mas axis appears to be involved in preeclampsia (PE), in which a reduction in Ang-(1-7) was observed. Here, we tested whether the reduction in the activity of the Ang-(1-7)/Mas axis could be a contributing factor for the development of PE, using Mas-deficient (Mas-/-) mice. METHODS AND RESULTS: Cardiovascular parameters were evaluated by telemetry before, during pregnancy and 4 days postpartum in 20-week-old Mas-/- and wild-type (WT) female mice. Mas-/- mice presented reduced arterial blood pressure (BP) at baseline (91.3 ± 0.8 in Mas-/- vs. 94.0 ± 0.9 mmHg in WT, Diastolic, P<0.05). However, after the 13th day of gestation, BP in Mas-/- mice started to increase, time-dependently, and at day 19 of pregnancy, these animals presented a higher BP in comparison with WT group (90.5 ± 0.7 in Mas-/- vs. 80.3 ± 3.5 mmHg in WT, Diastolic D19, P<0.0001). Moreover, pregnant Mas-/- mice presented fetal growth restriction, increase in urinary protein excretion as compared with nonpregnant Mas-/-, oliguria, increase in cytokines, endothelial dysfunction and reduced ACE, AT1R, ACE2, ET-1A, and eNOS placental mRNA, similar to some of the clinical manifestations found in the development of PE. CONCLUSIONS: These results show that Mas-deletion produces a PE-like state in FVB/N mice.


Assuntos
Peptidil Dipeptidase A , Pré-Eclâmpsia , Gravidez , Feminino , Camundongos , Animais , Humanos , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proto-Oncogene Mas , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Placenta/metabolismo , Sistema Renina-Angiotensina , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/metabolismo , Fenótipo , Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo
8.
Life (Basel) ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511973

RESUMO

Diabetic cardiomyopathy refers to myocardial dysfunction in type 2 diabetes, but without the traditional cardiovascular risk factors or overt clinical atherosclerosis and valvular disease. The activation of the renin-angiotensin system (RAS), oxidative stress, lipotoxicity, maladaptive immune responses, imbalanced mitochondrial dynamics, impaired myocyte autophagy, increased myocyte apoptosis, and fibrosis contribute to diabetic cardiomyopathy. This review summarizes the studies that address the link between cardiomyopathy and the RAS in humans and presents proposed pathophysiological mechanisms underlying this association. The RAS plays an important role in the development and progression of diabetic cardiomyopathy. The over-activation of the classical RAS axis in diabetes leads to the increased production of angiotensin (Ang) II, angiotensin type 1 receptor activation, and aldosterone release, contributing to increased oxidative stress, fibrosis, and cardiac remodeling. In contrast, Ang-(1-7) suppresses oxidative stress, inhibits tissue fibrosis, and prevents extensive cardiac remodeling. Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers improve heart functioning and reduce the occurrence of diabetic cardiomyopathy. Experimental studies also show beneficial effects for Ang-(1-7) and angiotensin-converting enzyme 2 infusion in improving heart functioning and tissue injury. Further research is necessary to fully understand the pathophysiology of diabetic cardiomyopathy and to translate experimental findings into clinical practice.

9.
Int. j. morphol ; 41(3): 894-900, jun. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1514321

RESUMO

SUMMARY: It is known that diabetes mellitus has late complications, including microvascular and macrovascular diseases. Diabetes can affect bones through biochemical markers of bone structure, density, and turnover. This study aimed to biomechanically investigate the bone-protective effects of angiotensin 1-7 (Ang 1-7), one of the active peptides in the renin-angiotensin system, in rats with diabetes. Thirty male Wistar albino rats, three months old and weighing 250-300 g, were divided into four groups: diabetes, Ang 1- 7, diabetes plus Ang 1-7, and control. One month later, diabetes developed in rats; the rats were sacrificed, and their right femur was removed. Three-point bending biomechanical tests were performed on the femurs. The diabetic group had significantly higher bone fragility than the other groups (Pr >.05). Bone fragility was lower, and bone flexibility was higher in the Ang 1-7 groups (Pr>F value 0.05). As a result of our study, the effect of Ang 1-7 on the bones of rats with diabetes was investigated biomechanically. Ang 1-7 has a protective impact on the bones of rats with diabetes.


Se sabe que la diabetes mellitus tiene complicaciones tardías, incluyendo enfermedades microvasculares y macrovasculares. La diabetes puede afectar los huesos a través de los marcadores bioquímicos de la estructura, la densidad y el recambio óseo. Este estudio tuvo como objetivo investigar biomecánicamente los efectos protectores en los huesos de la angiotensina 1-7 (Ang 1-7), uno de los péptidos activos en el sistema renina-angiotensina, en ratas con diabetes. Treinta ratas albinas Wistar macho, de tres meses de edad y con un peso de 250-300 g, se dividieron en cuatro grupos: diabetes, Ang 1-7, diabetes más Ang 1-7 y control. Un mes después, se desarrolló diabetes en ratas; se sacrificaron los animales y se extrajo su fémur derecho. Se realizaron pruebas biomecánicas de flexión de tres puntos en los fémures. El grupo diabéticos tenía una fragilidad ósea significativamente mayor que los otros grupos (Pr > 0,05). La fragilidad ósea fue menor y la flexibilidad ósea fue mayor en los grupos Ang 1-7 (valor Pr>F 0,05). Como resultado de nuestro estudio, se determinó biomecánicamente el efecto de Ang 1-7 en los huesos de ratas con diabetes. Se concluye que Ang 1-7 tiene un impacto protector en los huesos de ratas diabéticas.


Assuntos
Animais , Masculino , Ratos , Fragmentos de Peptídeos/administração & dosagem , Sistema Renina-Angiotensina , Angiotensina I/administração & dosagem , Diabetes Mellitus Experimental , Fêmur/efeitos dos fármacos , Fenômenos Biomecânicos , Osso e Ossos/efeitos dos fármacos , Ratos Wistar , Modelos Animais de Doenças
10.
Physiol Rep ; 11(5): e15621, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905124

RESUMO

We tested the hypothesis that third ventricular (3V) injections of angiotensin 1-7 (Ang 1-7) increases thermogenesis in brown adipose tissue (BAT), and whether the Mas receptor mediates this response. First, in male Siberian hamsters (n = 18), we evaluated the effect of Ang 1-7 in the interscapular BAT (IBAT) temperature and, using selective Mas receptor antagonist A-779, the role of Mas receptor in this response. Each animal received 3V injections (200 nL), with 48 h intervals: saline; Ang 1-7 (0.03, 0.3, 3, and 30 nmol); A-779 (3 nmol); and Ang 1-7 (0.3 nmol) + A-779 (3 nmol). IBAT temperature increased after 0.3 nmol Ang 1-7 compared with Ang 1-7 + A-779 at 20, 30, and 60 min. Also, 0.3 nmol Ang 1-7 increased IBAT temperature at 10 and 20 min, and decreased at 60 min compared with pretreatment. IBAT temperature decreased after A-779 at 60 min and after Ang 1-7 + A-779 at 30 and 60 min compared with the respective pretreatment. A-779 and Ang 1-7 + A-779 decreased core temperature at 60 min compared with 10 min. Then, we evaluated blood and tissue Ang 1-7 levels, and the expression of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) in IBAT. Male Siberian hamsters (n = 36) were killed 10 min after one of the injections. No changes were observed in blood glucose, serum and IBAT Ang 1-7 levels, and ATGL. Ang 1-7 (0.3 nmol) increased p-HSL expression compared with A-779 and increased p-HSL/HSL ration compared with other injections. Ang 1-7 and Mas receptor immunoreactive cells were found in brain regions that coincide with the sympathetic nerves outflow to BAT. In conclusion, 3V injection of Ang 1-7 induced thermogenesis in IBAT in a Mas receptor-dependent manner.


Assuntos
Tecido Adiposo Marrom , Phodopus , Cricetinae , Animais , Masculino , Tecido Adiposo Marrom/metabolismo , Termogênese/fisiologia , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA