Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Dis ; : PDIS06231154RE, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37775922

RESUMO

A mandatory tomato-free period (TFP) was implemented in the state of Goiás, Brazil, in 2007 to help manage diseases caused by whitefly-transmitted begomoviruses. The impact of the TFP was examined in five locations across three states in Central Brazil from 2013 to 2016. Surveys revealed significant differences in begomovirus disease incidence among locations, i.e., low in Guaíra-TFP and Patos de Minas-TFP; moderate-high in Itaberaí-TFP and Morrinhos-TFP; and high in the non-TFP (NTFP) control, Cristalina-NTFP. PCR tests and DNA sequencing were used to validate the symptoms and showed that all collected symptomatic plant samples were infected with tomato severe rugose virus (ToSRV), a common indigenous bipartite begomovirus. Early season surveys (20 to 40 days after transplants [DAT]) in Itaberaí-TFP and Morrinhos-TFP revealed significantly less begomovirus disease in fields established sooner after the TFP (0 to 2 months) compared with incidences in (i) equivalent early planted fields in the Cristalina-NTFP control and (ii) fields established longer after the end of the TFP (>2 to 5 months). Whitefly infestation of crops was detected year-round in all locations and years, and all tested adults were classified in the Bemisia tabaci MEAM1 cryptic species. Infestation levels were significantly higher during the summer but did not vary significantly among locations. Results of monthly monitoring of adult whiteflies for general begomovirus and ToSRV were positively correlated and were indicators of disease incidence in the field. Notably, ToSRV was not detected in whiteflies collected from nontomato plants during the TFP, and there was a longer lag period before detection in whiteflies collected from processing tomatoes for Itaberaí-TFP and Morrinhos-TFP compared with Cristalina-NTFP. Taken together with the low levels of ToSRV infection detected in potential nontomato reservoir hosts at all locations, our results revealed low levels of primary inoculum during the TFP. Thus, even in a complex agroecosystem with year-round whitefly infestation of crops, the TFP was beneficial due to delayed and reduced begomovirus disease pressure during a critical stage of plant development (first month) and for favoring low levels of primary inoculum. Thus, we concluded that the TFP should be part of a regional integrated pest management (IPM) program targeting ToSRV in Brazil.

2.
Methods Mol Biol ; 2732: 103-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060120

RESUMO

Viruses comprise the most abundant genetic material in the biosphere; however, global viral genomic population (virome) has been largely underestimated. Recently, high-throughput sequencing (HTS) has provided a powerful tool for the detection of known viruses and the discovery of novel viral species from environmental and individual samples using metagenomics and ecogenomics approaches, respectively. Viruses with circular DNA single-stranded (ssDNA) genomes belonging to the begomovirus genera (family Geminiviridae) constitute the largest group of emerging plant viruses worldwide. The knowledge of begomoviruses viromes is mostly restricted to crop plant systems; nevertheless, it has been described that noncultivated plants specifically at the interface between wild and cultivated plants are important reservoirs leading to viral evolution and the emergence of new diseases. Here we present a protocol that allows the identification and isolation of known and novel begomoviruses species infecting cultivated and noncultivated plant species. The method consists of circular viral molecules enrichment by rolling circle amplification (RCA) from begomovirus-positive total plant DNA, followed by NGS-based metagenomic sequencing. Subsequently, metagenomic reads are processed for taxonomic classification using Viromescan software and a customized Geminiviridae family database, and begomovirus-related reads are used for contigs assembly and annotation using Spades software and Blastn algorithm, respectively. Then, the obtained begomovirus-related signatures are used as templates for specific primers design and implemented for PCR-based ecogenomic identification of individual samples harboring the corresponding viral species. Lastly, full-length begomovirus genomes are obtained by RCA-based amplification from total plant DNA of selected individual samples, cloning, and viral molecular identity corroborated by Sanger sequencing. Conclusively, the identification and isolation of a novel monopartite begomovirus species native to the New World (NW) named Gallium leaf deformation virus (GLDV) is shown.


Assuntos
Begomovirus , DNA Viral , DNA Viral/genética , Filogenia , Plantas/genética , Begomovirus/genética , Genoma Viral , Metagenômica/métodos , DNA de Plantas , DNA Circular/genética , Doenças das Plantas
3.
Viruses ; 15(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37896851

RESUMO

Mixed infection between two or more begomoviruses is commonly found in tomato fields and can affect disease outcomes by increasing symptom severity and viral accumulation compared with single infection. Viruses that affect tomato include tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV). Previous work showed that in mixed infection, ToRMV negatively affects the infectivity and accumulation of ToSRV. ToSRV and ToRMV share a high degree of sequence identity, including cis-elements in the common region (CR) and their specific recognition sites (iteron-related domain, IRD) within the Rep gene. Here, we investigated if divergent sites in the CR and IRD are involved in the interaction between these two begomoviruses. ToSRV clones were constructed containing the same nucleotides as ToRMV in the CR (ToSRV-A(ToR:CR)), IRD (ToSRV-A(ToR:IRD)) and in both regions (ToSRV-A(ToR:CR+IRD)). When plants were co-inoculated with ToRMV and ToSRV-A(ToR:IRD), the infectivity and accumulation of ToSRV were negatively affected. In mixed inoculation of ToRMV with ToSRV-A(ToR:CR), high infectivity of both viruses and high DNA accumulation of ToSRV-A(ToR:CR) were observed. A decrease in viral accumulation was observed in plants inoculated with ToSRV-A(ToR:CR+IRD). These results indicate that differences in the CR, but not the IRD, are responsible for the negative interference of ToRMV on ToSRV.


Assuntos
Begomovirus , Coinfecção , Vírus do Mosaico , Solanum lycopersicum , Begomovirus/genética , Nucleotídeos , Doenças das Plantas , Plantas , DNA Viral/genética , Vírus do Mosaico/genética
4.
Viruses ; 15(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515277

RESUMO

Begomoviruses, which belong to the Geminiviridae family, are intracellular parasites transmitted by whiteflies to dicotyledonous plants thatsignificantly damage agronomically relevant crops. These nucleus-replicating DNA viruses move intracellularly from the nucleus to the cytoplasm and then, like other plant viruses, cause disease by spreading systemically throughout the plant. The transport proteins of begomoviruses play a crucial role in recruiting host components for the movement of viral DNA within and between cells, while exhibiting functions that suppress the host's immune defense. Pioneering studies on species of the Begomovirus genus have identified specific viral transport proteins involved in intracellular transport, cell-to-cell movement, and systemic spread. Recent research has primarily focused on viral movement proteins and their interactions with the cellular host transport machinery, which has significantly expanded understanding on viral infection pathways. This review focuses on three components within this context: (i) the role of viral transport proteins, specifically movement proteins (MPs) and nuclear shuttle proteins (NSPs), (ii) their ability to recruit host factors for intra- and intercellular viral movement, and (iii) the suppression of antiviral immunity, with a particular emphasis on bipartite begomoviral movement proteins.


Assuntos
Begomovirus , Begomovirus/genética , DNA Viral/genética , Proteínas Virais/genética , Proteínas de Transporte/metabolismo , Mecanismos de Defesa , Doenças das Plantas
5.
Front Microbiol ; 13: 843035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547137

RESUMO

Begomoviruses (Family Geminiviridae) are a major group of emerging plant viruses worldwide. The knowledge of begomoviruses is mostly restricted to crop plant systems. Nevertheless, it has been described that non-cultivated plants are important reservoirs and vessels of viral evolution that leads to the emergence of new diseases. High-throughput sequencing (HTS) has provided a powerful tool for speeding up the understanding of molecular ecology and epidemiology of plant virome and for discovery of new viral species. In this study, by performing earlier metagenomics library data mining, followed by geminivirus-related signature single plant searching and RCA-based full-length viral genome cloning, and based on phylogenetic analysis, genomes of two isolates of a novel monopartite begomovirus species tentatively named Galium leaf distortion virus (GLDV), which infects non-cultivated endemic plant Galium mexicanum, were identified in Colima, Mexico. Analysis of the genetic structure of both isolates (GLDV-1 and GLDV-2) revealed that the GLDV genome displays a DNA-A-like structure shared with the new world (NW) bipartite begomoviruses. Nonetheless, phylogenetic analysis using representative members of the main begomovirus American clades for tree construction grouped both GLDV isolates in a clade of the monopartite NW begomovirus, Tomato leaf deformation virus (ToLDeV). A comparative analysis of viral replication regulatory elements showed that the GLDV-1 isolate possesses an array and sequence conservation of iterons typical of NW begomovirus infecting the Solanaceae and Fabaceae families. Interestingly, GLDV-2 showed iteron sequences described only in monopartite begomovirus from OW belonging to a sweepovirus clade that infects plants of the Convolvulaceae family. In addition, the rep iteron related-domain (IRD) of both isolates display FRVQ or FRIS amino acid sequences corresponding to NW and sweepobegomovirus clades for GMV-1 and GMV-2, respectively. Finally, the lack of the GLDV DNA-B segment (tested by molecular detection and biological assays using GLDV-1/2 infectious clones) confirmed the monopartite nature of GLDV. This is the first time that a monopartite begomovirus is described in Mexican ecosystems, and "in silico" geometagenomics analysis indicates that it is restricted to a specific region. These data revealed additional complexity in monopartite begomovirus genetics and geographic distribution and highlighted the importance of metagenomic approaches in understanding global virome ecology and evolution.

6.
Viruses ; 12(8)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731641

RESUMO

A complex of begomoviruses (Geminiviridae) can cause severe tomato yield losses in the neotropics. Here, next-generation sequencing was employed for large-scale assessment of single-stranded (ss)DNA virus diversity in tomatoes either harboring or lacking the large-spectrum begomovirus tolerance Ty-1 gene. Individual leaf samples exhibiting begomovirus-like symptoms (n = 107) were field-collected, circular DNA-enriched, subdivided into pools (with and without Ty-1), and Illumina-sequenced. Virus-specific PCR and Sanger dideoxy sequencing validations confirmed 15 distinct ssDNA virus/subviral agents (occurring mainly in mixed infections), which highlight the potential drawbacks of employing virus-specific resistance in tomato breeding. More viruses (14 versus 6 species) were observed in tomatoes without the Ty-1 gene. A gemycircularvirus (Genomoviridae), a new alpha-satellite, and two novel Begomovirus species were identified exclusively in samples without the Ty-1 gene. A novel begomovirus was found only in the Ty-1 pool, being the only species associated with severe symptoms in Ty-1 plants in our survey. Our work is the first step towards the elucidation of the potential begomovirus adaptation to Ty-1 and its specific filtering effects on a subset of ssDNA viral/subviral agents.


Assuntos
Begomovirus/classificação , Genes de Plantas , Metagenômica , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Begomovirus/isolamento & purificação , DNA de Cadeia Simples , Sequenciamento de Nucleotídeos em Larga Escala , Solanum lycopersicum/genética , Folhas de Planta/virologia , Clima Tropical
7.
Front Plant Sci ; 11: 398, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322262

RESUMO

Begomoviruses (Geminiviridae family) represent a severe constraint to agriculture worldwide. As ssDNA viruses that replicate in the nuclei of infected cells, the nascent viral DNA has to move to the cytoplasm and then to the adjacent cell to cause disease. The begomovirus nuclear shuttle protein (NSP) assists the intracellular transport of viral DNA from the nucleus to the cytoplasm and cooperates with the movement protein (MP) for the cell-to-cell translocation of viral DNA to uninfected cells. As a facilitator of intra- and intercellular transport of viral DNA, NSP is predicted to associate with host proteins from the nuclear export machinery, the intracytoplasmic active transport system, and the cell-to-cell transport complex. Furthermore, NSP functions as a virulence factor that suppresses antiviral immunity against begomoviruses. In this review, we focus on the protein-protein network that converges on NSP with a high degree of centrality and forms an immune hub against begomoviruses. We also describe the compatible host functions hijacked by NSP to promote the nucleocytoplasmic and intracytoplasmic movement of viral DNA. Finally, we discuss the NSP virulence function as a suppressor of the recently described NSP-interacting kinase 1 (NIK1)-mediated antiviral immunity. Understanding the NSP-host protein-protein interaction (PPI) network will probably pave the way for strategies to generate more durable resistance against begomoviruses.

8.
Rev. biol. trop ; 67(3)jun. 2019.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1507516

RESUMO

Since the early 1990s, and almost simultaneously, unknown diseases started to be observed in many crops, especially in tropical and subtropical regions. These diseases were predominantly caused by begomoviruses, which were poorly known at that time. Their vector, the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae), often reached unprecedented huge populations in agricultural areas. This elicited a serious production crisis worldwide, that caused losses of millions of dollars for farmers in many countries, including the Mesoamerican region. Fortunately, in Costa Rica, some local research centers, with the collaboration of foreign specialists, have been able to study the causes of this phenomenon, in the search for solutions based on solid epidemiological information. In addition to the previously reported native Bemisia tabaci species, New World (NW), two exotic species, -Mediterranean (MED) and Middle East-Asia Minor 1 (MEAM1)- were found. Moreover, native and exotic bipartite begomoviruses have been detected, especially in common bean, cucurbits, tomato and sweet pepper, as well as the worldwide spread monopartite begomovirus Tomato yellow leaf curl virus (TYLCV). Based upon biological and ecological knowledge accumulated to date, this review offers a comprehensive overview of the very dynamic ways in which the interactions of the different whiteflies and begomovirus species have expressed in Costa Rica, with emphasis on vegetable pathosystems. Hopefully, the information provided in this paper may allow farmers, extension agents, and researchers involved in vegetable production to develop sound practical responses to current and unforeseen problems regarding whiteflies and their associated viruses.


Desde inicios del decenio de 1990 y de manera casi simultánea, se empezaron a observar afecciones desconocidas en numerosos cultivos, sobre todo en regiones tropicales y subtropicales. Dichas enfermedades eran causadas por begomovirus hasta entonces poco estudiados. Su vector es la mosca blanca Bemisia tabaci (Hemiptera: Aleyrodidae), de la que no se habían registrado poblaciones tan desmedidas en áreas agrícolas. Ello originó una seria crisis de producción a nivel mundial, con pérdidas millonarias para los agricultores de numerosos países, incluyendo la región de Mesoamérica. Por fortuna, en Costa Rica, algunos centros de investigación, con la colaboración de especialistas extranjeros, han podido profundizar en las causas de este fenómeno, para buscar soluciones fundamentadas en información de carácter epidemiológico. Además de la especie de B. tabaci New World (NW), nativa y previamente conocida, en años recientes han ingresado sendas especies del Mediterráneo (MED) y el Medio Oriente-Asia Menor 1 (MEAM1). Asimismo, se ha detectado la presencia de begomovirus bipartitas, nativos y exóticos, especialmente en frijol común, cucurbitáceas, tomate y chile; además, se detectó el begomovirus monopartito conocido a nivel mundial Tomato yellow leaf curl virus (TYLCV) en tomate. Con base en el conocimiento biológico y ecológico acumulado hasta ahora, en la presente revisión se aporta una panorámica del dinamismo con que se han expresado en Costa Rica las interacciones entre las diferentes especies vectoras y los distintos begomovirus, con énfasis en patosistemas de hortalizas. Se espera que la información aquí presentada permita mejorar el tipo de respuestas prácticas y eficaces de parte de agricultores, extensionistas agrícolas e investigadores involucrados en la producción de hortalizas, frente a problemas actuales o imprevistos.

9.
Bioessays ; 37(11): 1236-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26335701

RESUMO

NIK1 is a receptor-like kinase involved in plant antiviral immunity. Although NIK1 is structurally similar to the plant immune factor BAK1, which is a key regulator in plant immunity to bacterial pathogens, the NIK1-mediated defenses do not resemble BAK1 signaling cascades. The underlying mechanism for NIK1 antiviral immunity has recently been uncovered. NIK1 activation mediates the translocation of RPL10 to the nucleus, where it interacts with LIMYB to fully down-regulate translational machinery genes, resulting in translation inhibition of host and viral mRNAs and enhanced tolerance to begomovirus. Therefore, the NIK1 antiviral immunity response culminates in global translation suppression, which represents a new paradigm for plant antiviral defenses. Interestingly, transcriptomic analyses in nik1 mutant suggest that NIK1 may suppress antibacterial immune responses, indicating a possible opposite effect of NIK1 in bacterial and viral infections.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Arabidopsis/virologia , Begomovirus/imunologia , Imunidade Vegetal/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Fosforilação , Biossíntese de Proteínas/genética , Transporte Proteico/imunologia , Proteína Ribossômica L10 , Proteínas Ribossômicas/metabolismo , Transdução de Sinais , Glycine max/imunologia , Glycine max/virologia
10.
Virus Evol ; 1(1): vev004, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27774278

RESUMO

Current declines in biodiversity put at risk ecosystem services that are fundamental for human welfare. Increasing evidence indicates that one such service is the ability to reduce virus emergence. It has been proposed that the reduction of virus emergence occurs at two levels: through a reduction of virus prevalence/transmission and, as a result of these epidemiological changes, through a limitation of virus genetic diversity. Although the former mechanism has been studied in a few host-virus interactions, very little is known about the association between ecosystem biodiversity and virus genetic diversity. To address this subject, we estimated genetic diversity, synonymous and non-synonymous nucleotide substitution rates, selection pressures, and frequency of recombinants and re-assortants in populations of Pepper golden mosaic virus (PepGMV) and Pepper huasteco yellow vein virus (PHYVV) that infect chiltepin plants in Mexico. We then analyzed how these parameters varied according to the level of habitat anthropization, which is the major cause of biodiversity loss. Our results indicated that genetic diversity of PepGMV (but not of PHYVV) populations increased with the loss of biodiversity at higher levels of habitat anthropization. This was mostly the consequence of higher rates of synonymous nucleotide substitutions, rather than of adaptive selection. The frequency of recombinants and re-assortants was higher in PepGMV populations infecting wild chiltepin than in those infecting cultivated ones, suggesting that genetic exchange is not the main mechanism for generating genetic diversity in PepGMV populations. These findings provide evidence that biodiversity may modulate the genetic diversity of plant viruses, but it may differentially affect even two closely related viruses. Our analyses may contribute to understanding the factors involved in virus emergence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA