Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Technol ; : 1-16, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038436

RESUMO

The reuse of by-products has become increasingly important as a means of minimising the consumption of natural resources and reducing waste disposal. This study examines the potential reuse of steel slag for soil stabilisation, with benefits such as conserving natural resources and mitigating the greenhouse gas emissions associated with the production of conventional stabilising agents. It focuses on evaluating the effect of pozzolanic reactions on the strength and stiffness of both loess silt and silt-bentonite mixtures. The experimental tests included the physical characterisation of granular materials, reactivity tests of the pozzolanicity of soil mixtures, compaction tests, unconfined compression tests, and hydraulic conductivity tests. The impact of the curing period was also analysed to quantify the effects of natural cementation and the development of hydrogels within soil pores on the compacted soil properties. The findings suggest that adding steel slag can significantly increase the strength and the stiffness of compacted loess silts by over 300% and 500%, respectively, after 56 days of curing, substantially reducing the hydraulic conductivity of granular materials, such as the tested silt, as hydrogels partially occupy the pores available for liquid flow. It should be noted that the chemical reactions during hydrogel formation may hinder the free expansion of clay mixtures and release Ca2+ ions, thereby counteracting the expected reduction in hydraulic conductivity when bentonite is added to compacted earthen barriers.

2.
Environ Sci Pollut Res Int ; 31(41): 53718-53728, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38270764

RESUMO

Enhanced phosphorus management, geared towards sustainability, is imperative due to its indispensability for all life forms and its close association with water bodies' eutrophication, primarily stemming from anthropogenic activities. In response to this concern, innovative technologies rooted in the circular economy are emerging, to remove and recover this vital nutrient to global food production. This research undertakes an evaluation of the dead-end filtration performance of a mixed matrix membrane composed of modified bentonite (MB) and polyvinylidene fluoride (PVDF) for efficient phosphorus removal from water media. The MB:PVDF membrane exhibited higher permeability and surface roughness compared to the pristine membrane, showcasing an adsorption capacity (Q) of 23.2 mgP·m-2. Increasing the adsorbent concentration resulted in a higher removal capacity (from 16.9 to 23.2 mgP·m-2) and increased solution flux (from 0.5 to 16.5 L·m-2·h-1) through the membrane. The initial phosphorus concentration demonstrates a positive correlation with the adsorption capacity of the material, while the system pressure positively influences the observed flux. Conversely, the presence of humic acid exerts an adverse impact on both factors. Additionally, the primary mechanism involved in the adsorption process is identified as the formation of inner-sphere complexes.


Assuntos
Bentonita , Fósforo , Polivinil , Poluentes Químicos da Água , Bentonita/química , Fósforo/química , Adsorção , Polivinil/química , Poluentes Químicos da Água/química , Membranas Artificiais , Purificação da Água/métodos , Polímeros de Fluorcarboneto
3.
Polymers (Basel) ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836012

RESUMO

As a part of the mission to create materials that are more environmentally friendly, we present the following proposal, in which a study of the mechanical properties of composite materials comprising a polyester resin with sisal fiber and bentonite particles was conducted. Sisal fiber was added to a matrix in percentages ranging from 5% to 45% in relation to the polyester resin weight, while bentonite remained fixed at 7% in relation to the polyester resin weight. The specimens were manufactured by compression molding. The mechanical properties were analyzed by tensile, bending, impact, stepped creep, and relaxation tests. In addition, energy-dispersive X-ray spectroscopy and scanning electron microscopy analyses were carried out to analyze the composition and heterogeneity of the structure of the composite material. The results obtained showed that 7% of bentonite added to the matrix affects the tensile strength. Flexural strength increased by up to 21% in the specimens with a 20% addition of sisal fiber, while the elastic modulus increased by up to 43% in the case of a 20% addition of sisal fiber. The viscoelastic behavior was improved, while the relaxation stress was affected.

4.
Discov Nano ; 18(1): 98, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523022

RESUMO

Nanofertilizers could promote nutrient efficiency with slow release compared to conventional fertilizers (CF). Most of the applied nitrogen is lost on the soil by leaching, due to the rapid release behavior of CF. Clays can function as a nanosized porous structure to retain and slowly release nutrients. The objective of this study was to evaluate a nitrogenous nanocomposite (NCN) and its effect on leaching and N content of lettuce (Lactuca sativa). The treatments applied were: 100% conventional fertilizer, 100% nitrogenous nanocomposite and the mixture in percentage of CF/NCN 25/75, 50/50, 75/25 and 25/0, 50/0 75/0% on columns of soil with lettuce for 45 days. Leachates at the end of the cycle increased in treatments with NCN. Treatments with NCN have higher N content in the leaf. In regard to biomass growth, leaf area, leaf N, drained variables, electrical conductivity and NO3- content, it was possible to show that the doses of 50 and 75% of NCN match the characteristics of the crop compared to the control, which allows us to use lower doses than those recommended with CFs.

5.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111657

RESUMO

L-ascorbic acid (LAA), commonly known as vitamin C, is an excellent and recognized antioxidant molecule used in pharmaceutical and cosmetic formulations. Several strategies have been developed in order to preserve its chemical stability, connected with its antioxidant power, but there is little research regarding the employment of natural clays as LAA host. A safe bentonite (Bent)-which was verified by in vivo ophthalmic irritability and acute dermal toxicity assays-was used as carrier of LAA. The supramolecular complex between LAA and clay may constitute an excellent alternative, since the molecule integrity does not seem to be affected, at least from the point of view of its antioxidant capacity. The Bent/LAA hybrid was prepared and characterized through ultraviolet (UV) spectroscopy, X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetric analysis (TG/DTG) and zeta potential measurements. Photostability and antioxidant capacity tests were also performed. The LAA incorporation into Bent clay was demonstrated, as well as the drug stability due to the Bent photoprotective effect onto the LAA molecule. Moreover, the antioxidant capacity of the drug in the Bent/LAA composite was confirmed.

6.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987352

RESUMO

The influence of the addition of bentonite nanoparticles on the tensile and flexural strength of a thermosetting polymer matrix composite material reinforced with hemp fibers was de-terminated. All composites were manufactured with 5% of bentonite in the polymer mass-weight ratios and 10 to 45 wt% of fibers with a step of 5%. For mechanical characterization, tensile and flexural tests were performed: scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses were carried out. The tensile strength of the samples containing bentonite compared to the polymer samples with the fiber addition was affected for all fiber addition percentages, except for 35% while the flexural resistance improved with the addition of bentonite in the percentages of 20, 30, 35, and 45% of fiber addition. With the addition of bentonite, the maximum values of tensile and flexural strength were both obtained for the 35% addition of fibers, with values of 34.28 MPa and 98.04 MPa, respectively. The presence of bentonite favored the rigidity of the material to traction and bending, which was reflected through an increase in the elastic modulus compared to the composite that only had fiber. The maximum values obtained were 9065 MPa in tension and 8453 MPa in flexion for the 40% and 35% of addition of fiber, respectively. Microscopy showed a good distribution of fibers in the matrix, the absence of internal porosities, and a good interaction between matrix and reinforcement.

7.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768738

RESUMO

Anthocyanins are one of the natural pigments that humanity has employed the most and can substitute synthetic food dyes, which are considered toxic. They are responsible for most purple, blue, and red pigment nuances in tubers, fruits, and flowers. However, they have some limitations in light, pH, oxygen, and temperature conditions. Combining biomolecules and inorganic materials such as clay minerals can help to reverse these limitations. The present work aims to produce materials obtained using cetyltrimethylammonium bromide in bentonite clay for incorporation and photostabilization of anthocyanin dye. Characterizations showed that the organic molecules were intercalated between the clay mineral layers, and the dye was successfully incorporated at a different pH. Visible light-driven photostability tests were performed with 200 h of irradiation, confirming that the organic-inorganic matrices were efficient enough to stabilize the quinoidal base form of anthocyanin. The pigment prepared at pH 10 was three-fold more stable than pH 4, showing that the increase in the synthesis pH promotes more stable colors, probably due to the stronger intermolecular interaction obtained under these conditions. Therefore, organobentonite hybrids allow to stabilize the fragile color coming from the quinoidal base form of anthocyanin dyes.


Assuntos
Antocianinas , Corantes , Antocianinas/química , Corantes/química , Bentonita/química , Argila , Luz
8.
Environ Sci Pollut Res Int ; 29(58): 88119-88130, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35829885

RESUMO

Bentonite was applied in diffusive studies for selenium, an emerging contaminant. The planar source method was used to determine the apparent and effective diffusion coefficients and assess the mobility of the selenium species. A double Gaussian function described the results. Different diffusion coefficients were associated with different mobilities, and consequently, to the coexistence of two selenium species: selenite and selenate. Apparent diffusion coefficients were higher for selenate, around 10- 10 m2 s- 1, than for selenite, around 10- 12 m2 s- 1. Results from sequential extraction and distribution coefficient justified selenate's greater mobility than selenite. Since the increase in redox potential from 448 to 511 mV may be associated with selenite oxidation in an interconversion process, the diffusion in bentonite demonstrates that applications in geological barriers deserve attention regarding the mobilization of selenium species. Interconversions can mobilize selenium, as reduced species can shift to more oxidized and mobile species, enhancing environmental contamination.


Assuntos
Compostos de Selênio , Selênio , Ácido Selênico , Selênio/análise , Bentonita , Brasil , Ácido Selenioso
9.
Environ Sci Pollut Res Int ; 29(60): 90446-90462, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35871192

RESUMO

Waste rock from bentonite mining (WRBM) was evaluated as potential adsorbents for removing crystal violet (CV) and methylene blue (MB) cationic dyes from contaminated water. The waste samples (AM01, AM02, and AM03) were collected from different locations of the bentonite mine and characterized through X-ray diffraction, X-ray fluorescence, Fourier-transform infrared spectroscopy, N2 adsorption/desorption, and cation exchange capacity. The adsorption efficiency of CV and MB dyes was investigated through the effect of initial concentration, contact time, pH, the dosage of adsorbent, and temperature. Sample AM02 showed the largest surface area (69.13 m2/g) and the best adsorptive performance for both dyes, with removal more significant than 90%. The adsorption of CV and MB in the waste followed the Langmuir isothermal model. Samples AM01 and AM02 followed the pseudo-second-order (PSO) kinetic model, while AM03 better fitted the Elovich kinetic model. The enthalpy (ΔH), entropy (ΔS), and Gibbs energy (ΔG) were evaluated as adsorption parameters. The process of adsorption of CV and MB dyes in the waste was predominantly endothermic and occurred spontaneously. WRBM samples proved to be a promising candidate for removing cationic dyes present in water.


Assuntos
Bentonita , Corantes , Águas Residuárias , Cátions , Água
10.
Foods ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681323

RESUMO

The objective of this work was to obtain biomaterials as gelatin films or biofilms produced by casting, reinforced with a microfiber (MF) from Agave angustifolia Haw bagasse and bentonite (BN) nanoparticles and evaluate the effect of such reinforcements at different concentrations. Agave microfibers were obtained by a non-abrasive chemical method. Three formulations based on gelatin with glycerol were reinforced with microfiber, bentonite and both materials with 1.5, 3.5 and 5.5% w/w solids content. Physicochemical properties were determined using SEM and FTIR, thickness, soluble matter and moisture. The XRD, barrier, mechanical and thermal properties were measured. The films' micrographs showed agglomerations on the surface. Interactions between its functional groups were found. The solubility increased when the MF concentration increased. The thickness of the films was between 60 and 110 µm. The crystallinity ranged from 23 to 86%. The films with both MF and BN and 3.5% w/w solids had the lowest barrier properties, while the film with 5.5% w/w solids showed the highest mechanical properties, being thermally resistant. Overall, Agave microfibers together with bentonite were able to improve some of the films' properties, but optimized mixing conditions had to be used to achieve good particle dispersion within the gelatin matrix to improve its final properties. Such materials might have the potential to be used as food packaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA