Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.824
Filtrar
1.
Front Plant Sci ; 15: 1373318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086911

RESUMO

Coffee Breeding programs have traditionally relied on observing plant characteristics over years, a slow and costly process. Genomic selection (GS) offers a DNA-based alternative for faster selection of superior cultivars. Stacking Ensemble Learning (SEL) combines multiple models for potentially even more accurate selection. This study explores SEL potential in coffee breeding, aiming to improve prediction accuracy for important traits [yield (YL), total number of the fruits (NF), leaf miner infestation (LM), and cercosporiosis incidence (Cer)] in Coffea Arabica. We analyzed data from 195 individuals genotyped for 21,211 single-nucleotide polymorphism (SNP) markers. To comprehensively assess model performance, we employed a cross-validation (CV) scheme. Genomic Best Linear Unbiased Prediction (GBLUP), multivariate adaptive regression splines (MARS), Quantile Random Forest (QRF), and Random Forest (RF) served as base learners. For the meta-learner within the SEL framework, various options were explored, including Ridge Regression, RF, GBLUP, and Single Average. The SEL method was able to predict the predictive ability (PA) of important traits in Coffea Arabica. SEL presented higher PA compared with those obtained for all base learner methods. The gains in PA in relation to GBLUP were 87.44% (the ratio between the PA obtained from best Stacking model and the GBLUP), 37.83%, 199.82%, and 14.59% for YL, NF, LM and Cer, respectively. Overall, SEL presents a promising approach for GS. By combining predictions from multiple models, SEL can potentially enhance the PA of GS for complex traits.

2.
Front Plant Sci ; 15: 1393796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109054

RESUMO

The use of wild species as a source of genetic variability is a valued tool in the framework of crop breeding. Hordeum chilense Roem. et Schult is a wild barley species that can be a useful genetic donor for sustainable wheat breeding which carries genes conferring resistance to some diseases or increasing grain quality, among others. Septoria tritici blotch (STB), caused by the Zymoseptoria tritici fungus, is one of the most important wheat diseases worldwide, affecting both bread and durum wheat and having a high economic impact. Resistance to STB has been previously described in H. chilense chromosome 4Hch. In this study, we have developed introgression lines for H. chilense chromosome 4Hch in durum wheat using interspecific crosses, advanced backcrosses, and consecutive selfing strategies. Alien H. chilense chromosome segments have been reduced in size by genetic crosses between H. chilense disomic substitution lines in durum wheat and durum wheat lines carrying the Ph1 deletion. Hordeum chilense genetic introgressions were identified in the wheat background through several plant generations by fluorescence in situ hybridisation (FISH) and simple sequence repeat (SSR) markers. An STB infection analysis has also been developed to assess STB resistance to a specific H. chilense chromosome region. The development of these H. chilense introgression lines with moderate to high resistance to STB represents an important advance in the framework of durum breeding and can be a valuable tool for plant breeders.

3.
Sci Rep ; 14(1): 18592, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127859

RESUMO

Pecan (Carya illinoinensis) is an economically important nut crop known for its genetic diversity and adaptability to various climates. Understanding the growth variability, phenological traits, and population structure of pecan populations is crucial for breeding programs and conservation. In this study, plant growth and phenological traits were evaluated over three consecutive seasons (2015-2017) for 550 genotypes from 26 provenances. Significant variations in plant height, stem diameter, and budbreak were observed among provenances, with Southern provenances exhibiting faster growth and earlier budbreak compared to Northern provenances. Population structure analysis using SNP markers revealed eight distinct subpopulations, reflecting genetic differentiation among provenances. Notably, Southern Mexico collections formed two separate clusters, while Western collections, such as 'Allen 3', 'Allen 4', and 'Riverside', were distinguished from others. 'Burkett' and 'Apache' were grouped together due to their shared maternal parentage. Principal component analysis and phylogenetic tree analysis further supported subpopulation differentiation. Genetic differentiation among the 26 populations was evident, with six clusters highly in agreement with the subpopulations identified by STRUCTURE and fastSTRUCTURE. Principal components analysis (PCA) revealed distinct groups, corresponding to subpopulations identified by genetic analysis. Discriminant analysis of PCA (DAPC) based on provenance origin further supported the genetic structure, with clear separation of provenances into distinct clusters. These findings provide valuable insights into the genetic diversity and growth patterns of pecan populations. Understanding the genetic basis of phenological traits and population structure is essential for selecting superior cultivars adapted to diverse environments. The identified subpopulations can guide breeding efforts to develop resilient rootstocks and contribute to the sustainable management of pecan genetic resources. Overall, this study enhances our understanding of pecan genetic diversity and informs conservation and breeding strategies for the long-term viability of pecan cultivation.


Assuntos
Carya , Variação Genética , Fenótipo , Carya/genética , Carya/crescimento & desenvolvimento , Filogenia , Genótipo , México , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Genética Populacional
4.
Sci Rep ; 14(1): 18429, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117704

RESUMO

Understanding the genotype-by-environment interaction (GEI) and considering it in the selection process is a sine qua non condition for the expansion of Brazilian eucalyptus silviculture. This study's objective is to select high-performance and stable eucalyptus clones based on a novel selection index that considers the Factor Analytic Selection Tools (FAST) and the clone's reliability. The investigation explores the nuances interplay of GEI and extends its insights by scrutinizing the relationship between latent factors and real environmental features. The analysis, conducted across seven trials in five Brazilian states involving 78 clones, employs FAST. The clonal selection was performed using an extended FAST index weighted by the clone's reliability. Further insights about GEI emerge from the integration of factor loadings with 25 environmental features through a principal component analysis. Ten clones, distinguished by high performance, stability, and reliability, have been selected across the target population of environments. The environmental features most closely associated with factor loadings, encompassing air temperature, radiation, and soil characteristics, emerge as pivotal drivers of GEI within this dataset. This study contributes insights to eucalyptus breeders, equipping them to enhance decision-making by harnessing a holistic understanding-from the genotypes under evaluation to the diverse environments anticipated in commercial plantations.


Assuntos
Eucalyptus , Melhoramento Vegetal , Eucalyptus/genética , Melhoramento Vegetal/métodos , Brasil , Interação Gene-Ambiente , Tomada de Decisões , Genótipo , Meio Ambiente , Reprodutibilidade dos Testes
5.
Gen Comp Endocrinol ; 357: 114599, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39128814

RESUMO

Knowledge on hormonal regulation of reproductive cycles in viperid snakes is still incipient, especially when it comes to females and tropical species. There is an urgent need to understand the reproduction of venomous snakes to improve assisted reproduction techniques and optimize the maintenance of these animals in captivity. With this in mind, we monitored Northern pit viper females year-round throughout different seasons via serum levels of progesterone (P4) and estradiol (E2) in conjunction with ultrasound examinations. Ovarian follicles were classified according to their size and stage of vitellogenesis in F-I and F-II (non-vitellogenic phase) or in F-III and F-IV (vitellogenic phase). During autumn and winter, five adult males were rotated among these females for reproductive pairing, which resulted in 17 copulations and 2 pregnancies in the first year and 12 copulations and 5 pregnancies in the second year. Then, we assessed changes in P4 and E2 levels according to seasons, predominant ovarian structures and the presence of embryos or eggs in the oviduct. Our findings showed high levels of E2 when a greater number of vitellogenic follicles were detected, indicating a possible influence of E2 on vitellogenesis and higher levels of P4 whenever eggs and embryos were visualized in the oviduct, implying its role in maintaining pregnancy. Descriptive analysis of the vipers' ovarian cycles revealed a greater number of vitellogenic follicles during winter, probably as a result of increases in E2; whereas pregnancies occurred predominantly in spring, under the influence of P4. The use of ultrasound images, as a minimally invasive methodology, associated with serum steroid levels has proven to be an efficient approach in the reproductive monitoring of Northern pit vipers in vivo. In addition, these data suggest that female pit vipers under human care display a seasonal reproductive cycle, despite earlier studies involving captive males of the species indicating a lack of seasonality in sperm production and quality.


Assuntos
Estradiol , Progesterona , Ultrassonografia , Animais , Feminino , Progesterona/sangue , Estradiol/sangue , Estações do Ano , Masculino , Bothrops , Ovário/diagnóstico por imagem , Ovário/metabolismo , Folículo Ovariano/diagnóstico por imagem , Folículo Ovariano/metabolismo , Genitália Feminina/diagnóstico por imagem , Bothrops atrox
6.
Euphytica ; 220(8): 127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39071946

RESUMO

The performance differences in cassava genotypes arising from genotype vs. environment interactions (G × E) often lead to responses that are significantly lower than expected for selection. The objective of this study was to evaluate different stability methods, both parametric and non-parametric, such as additive main-effects and multiplicative interaction (AMMI), main effect of genotypes plus G × E (GGE), and weighted average of absolute scores (WAASB), in order to quantify the G × E in multi-environmental trials. A total of 12 genotypes were assessed across 12 environments using a completely randomized block design, with three replicates for traits such as fresh root yield (FRY) and dry matter content in the roots (DMC). The data were subjected to analysis of variance and the Scott Knott test (p < 0.05). The sum of squares (SQ) of genotypes, environment, and G × E effects were equally distributed for FRY, whereas for DMC, these effects accounted for 64.1%, 21.9%, and 13.8% of the SQ, respectively, indicating a lower environmental effect on this characteristic. Using the AMMI, GGE, and WAASB methods, genotypes with high agronomic performance and stability for FRY (BR11-34-41 and BR11-34-69) (> 32 t ha-1) and DMC (BRS Novo Horizonte, BR12-107-002, and BR11-24-156) (> 37%) were identified. The broad-sense heritability ( h 2 ) for FRY and DMC was estimated to be 0.45 and 0.75, respectively. Approximately 72% of the methods identified BRS Novo Horizonte as the genotype with the highest stability and performance for DMC, while 47% identified genotypes BR11-34-41 and BR11-34-69 for FRY and intermediate DMC. Genotype BR11-24-156 exhibited high static stability according to 50% of the methods. Significant correlations were observed between stability and agronomic performance across the different methods, enabling the formation of groups based on stability concepts. Additionally, it was found that two mega-environments existed for FRY, whereas DMC displayed a single mega-environment with similar patterns, indicating an absence of G × E. We identified superior genotypes that could be promoted to national performance trials to develop stable cultivars with better yield attributes in cassava. Supplementary Information: The online version contains supplementary material available at 10.1007/s10681-024-03384-5.

7.
Environ Sci Pollut Res Int ; 31(32): 45177-45191, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961017

RESUMO

The intensification of livestock farming can pose risks to the environment due to the increased use of veterinary products and the generation of waste in confined areas. The quality of water bodies near livestock establishments (Areco River (A) and Doblado stream (D), San Antonio de Areco, Buenos Aires, Argentina) was studied by physicochemical parameters, metals, pesticides, emerging contaminants, and lethal and sublethal toxicity (neurotoxicity and oxidative stress) in larvae of the native amphibian Rhinella arenarum. Six sites were selected: upstream (S1A and S1D), at the level (S2A and S2D), and downstream (S3A and S3D) from the establishments. A low concentration of dissolved oxygen was observed in Doblado stream (< 2.34 mg/L). Cu, Mn, V, and Zn exceeded the limits for the protection of aquatic life at various sites. Between 24 and 34 pesticides were detected in all sites, with 2,4-D, atrazine, and metolachlor being the most recurrent. In water and sediment, the concentrations of ivermectin (S2A, 1.32 µg/L and 58.18 µg/kg; S2D, 0.8 µg/L and 85.22 µg/kg) and oxytetracycline (S2A, < 1 mg/L and < 1 mg/kg; S2D, 11.8 mg/L and 39 mg/kg) were higher at sites near the establishments. All sites caused between 30 and 38.3% of lethality and produced neurotoxicity and alterations in the reduced glutathione content. Moreover, larvae exposed to samples from all sites incorporated ivermectin. These results demonstrate the degradation of the studied sites in relation to the agricultural activities of the area, highlighting the need to take measures to protect and preserve aquatic ecosystems.


Assuntos
Agricultura , Ecotoxicologia , Monitoramento Ambiental , Poluentes Químicos da Água , Qualidade da Água , Animais , Poluentes Químicos da Água/análise , Argentina , Bovinos , Praguicidas/toxicidade
8.
New Phytol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014516

RESUMO

Through enviromics, precision breeding leverages innovative geotechnologies to customize crop varieties to specific environments, potentially improving both crop yield and genetic selection gains. In Brazil's four southernmost states, data from 183 distinct geographic field trials (also accounting for 2017-2021) covered information on 164 genotypes: 79 phenotyped maize hybrid genotypes for grain yield and their 85 nonphenotyped parents. Additionally, 1342 envirotypic covariates from weather, soil, sensor-based, and satellite sources were collected to engineer 10 K synthetic enviromic markers via machine learning. Soil, radiation light, and surface temperature variations remarkably affect differential genotype yield, hinting at ecophysiological adjustments including evapotranspiration and photosynthesis. The enviromic ensemble-based random regression model showcases superior predictive performance and efficiency compared to the baseline and kernel models, matching the best genotypes to specific geographic coordinates. Clustering analysis has identified regions that minimize genotype-environment (G × E) interactions. These findings underscore the potential of enviromics in crafting specific parental combinations to breed new, higher-yielding hybrid crops. The adequate use of envirotypic information can enhance the precision and efficiency of maize breeding by providing important inputs about the environmental factors that affect the average crop performance. Generating enviromic markers associated with grain yield can enable a better selection of hybrids for specific environments.

9.
Animals (Basel) ; 14(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998071

RESUMO

Chlamydiosis, caused by Chlamydia psittaci is a bacterial infection found in at least 465 species of birds worldwide. It is highly contagious among birds and can spread to humans. In birds, the disease can manifest itself in acute, subacute, and chronic forms with signs including anorexia, diarrhea, lethargy, weight loss, or, occasionally, mucopurulent or serous oculonasal discharge. This article describes an outbreak of chlamydiosis that occurred in a commercial psittacine breeding aviary in 2021 in Buenos Aires province, Argentina. In total, 16 juvenile blue-fronted parrots, more than 60 blue-fronted parrot chicks, and 2 adult macaws died during the outbreak. In all cases, clinical signs were weight loss, diarrhea, yellowish green excrement, and respiratory distress. The necropsy of four juvenile blue-fronted parrots, two blue-fronted parrot chicks, and two adult macaws revealed cachexia, hepatomegaly, splenomegaly, splenic petechial hemorrhages, ascites, pulmonary edema, and hydropericardium. Histologically, multifocal lymphoplasmacytic and heterophilic airsaculitis, multifocal lymphoplasmacytic and necrotizing hepatitis with intracytoplasmic elementary bodies, multifocal necro-heterophilic hepatitis, multifocal lymphoplasmacytic nephritis, and diffuse heterophilic pneumonia were found. A presumptive diagnosis was established based on gross and microscopic lesions, and it was confirmed using immunohistochemistry and polymerase chain reactions. The sequencing and phylogenetic analysis of the ompA gene revealed genotype A and B of Chlamydia psittaci.

10.
Plants (Basel) ; 13(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38999716

RESUMO

Genome-wide association studies (GWASs) allow for inferences about the relationships between genomic variants and phenotypic traits in natural or breeding populations. However, few have used this methodology in Coffea arabica. We aimed to identify chromosomal regions with significant associations between SNP markers and agronomic traits in C. arabica. We used a coffee panel consisting of 195 plants derived from 13 families in F2 generations and backcrosses of crosses between leaf rust-susceptible and -resistant genotypes. The plants were phenotyped for 18 agronomic markers and genotyped for 21,211 SNP markers. A GWAS enabled the identification of 110 SNPs with significant associations (p < 0.05) for several agronomic traits in C. arabica: plant height, plagiotropic branch length, number of vegetative nodes, canopy diameter, fruit size, cercosporiosis incidence, and rust incidence. The effects of each SNP marker associated with the traits were analyzed, such that they can be used for molecular marker-assisted selection. For the first time, a GWAS was used for these important agronomic traits in C. arabica, enabling applications in accelerated coffee breeding through marker-assisted selection and ensuring greater efficiency and time reduction. Furthermore, our findings provide preliminary knowledge to further confirm the genomic loci and potential candidate genes contributing to various structural and disease-related traits of C. arabica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA