Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Chembiochem ; : e202400506, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923811

RESUMO

Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.

2.
Life Sci ; 350: 122784, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848939

RESUMO

Calcium is a secondary messenger that interacts with several cellular proteins, regulates various physiological processes, and plays a role in diseases such as viral infections. Next-generation probiotics and live biotherapeutic products are linked to the regulation of intracellular calcium levels. Some viruses can manipulate calcium channels, pumps, and membrane receptors to alter calcium influx and promote virion production and release. In this study, we examined the use of bacteria for the prevention and treatment of viral diseases, such as coronavirus of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccination programs have helped reduce disease severity; however, there is still a lack of well-recognized drug regimens for the clinical management of COVID-19. SARS-CoV-2 interacts with the host cell calcium (Ca2+), manipulates proteins, and disrupts Ca2+ homeostasis. This article explores how viruses exploit, create, or exacerbate calcium imbalances, and the potential role of probiotics in mitigating viral infections by modulating calcium signaling. Pharmacological strategies have been developed to prevent viral replication and block the calcium channels that serve as viral receptors. Alternatively, probiotics may interact with cellular calcium influx, such as Lactobacillus spp. The interaction between Akkermansia muciniphila and cellular calcium homeostasis is evident. A scientific basis for using probiotics to manipulate calcium channel activity needs to be established for the treatment and prevention of viral diseases while maintaining calcium homeostasis. In this review article, we discuss how intracellular calcium signaling can affect viral replication and explore the potential therapeutic benefits of probiotics.


Assuntos
COVID-19 , Cálcio , Probióticos , SARS-CoV-2 , Probióticos/uso terapêutico , Probióticos/farmacologia , Humanos , COVID-19/metabolismo , COVID-19/virologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
3.
Eur J Pharmacol ; 971: 176489, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492875

RESUMO

Substance abuse disorder is a chronic condition for which pharmacological treatment options remain limited. L-type calcium channels (LTCC) have been implicated in drug-related plasticity and behavior. Specifically, dopaminergic neurons in the mesocorticolimbic pathway express Cav1.2 and Cav1.3 channels, which may regulate dopaminergic activity associated with reward behavior. Therefore, this study aimed to investigate the hypothesis that pre-administration of the LTCC blocker, isradipine can mitigate the effects of cocaine by modulating central glutamatergic transmission. For that, we administered isradipine at varying concentrations (1, 7.5, and 15 µg/µL) via intracerebroventricular injection in male Swiss mice. This pretreatment was carried out prior to subjecting animals to behavioral assessments to evaluate cocaine-induced locomotor sensitization and conditioned place preference (CPP). The results revealed that isradipine administered at a concentration of 1 µg/µL effectively attenuated both the sensitization and CPP induced by cocaine (15 mg/kg, via i. p.). Moreover, mice treated with 1 µg/µL of isradipine showed decreased presynaptic levels of glutamate and calcium in the cortex and hippocampus as compared to control mice following cocaine exposure. Notably, the gene expression of ionotropic glutamate receptors, AMPA, and NMDA, remained unchanged, as did the expression of Cav1.2 and Cav1.3 channels. Importantly, these findings suggest that LTCC blockage may inhibit behavioral responses to cocaine, most likely by decreasing glutamatergic input in areas related to addiction.


Assuntos
Bloqueadores dos Canais de Cálcio , Cocaína , Camundongos , Masculino , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Isradipino/farmacologia , Ácido Glutâmico , Cocaína/farmacologia , Dopamina/metabolismo
4.
Cell Calcium ; 119: 102852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412581

RESUMO

In skeletal muscle (SM), inward Ca2+-currents have no apparent role in excitation-contraction coupling (e-c coupling), however the Ca2+-channel blocker can affect twitch and tetanic muscle in mammalian SM. Experiments were conducted to study how diltiazem (DLZ) facilitates e-c coupling and inhibits contraction. 1) In complete Extensor Digitorum Longus (EDL) muscle and single intact fibres, 0.03 mM DLZ causes twitch potentiation and decreases force during tetanic activity, with increased fatigue. 2) In split open fibres isolated from EDL fibres, DLZ inhibits sarcoplasmic reticulum (SR) Ca2+-loading in a dose-dependent manner and has a potentiating effect on caffeine-induced SR Ca2+-release. 3) In isolated light SR (LSR) vesicles, SERCA1 hydrolytic activity is not affected by DLZ up to 0.2 mM. However, ATP-dependent Ca2+-uptake was inhibited in a dose-dependent manner at a concentration where e-c coupling is changed. 4) The passive Ca2+-efflux from LSR was reduced by half with 0.03 mM diltiazem, indicating that SR leaking does not account for the decreased Ca2+-uptake. 5) The denaturation profile of the SERCA Ca2+-binding domain has lower thermal stability in the presence of DLZ in a concentration-dependent manner, having no effect on the nucleotide-binding domain. We conclude that the effect of DLZ on SM is exerted by crossing the sarcolemma and interacting directly with the SERCA Ca2+-binding domain, affecting SR Ca2+-loading during relaxation, which has a consequence on SM contractility. Diltiazem effect on SM could be utilized as a tool to understand SM e-c coupling and muscle fatigue.


Assuntos
Diltiazem , Músculo Esquelético , Animais , Diltiazem/farmacologia , Retículo Sarcoplasmático , Fadiga Muscular , Cafeína/farmacologia , Mamíferos , Contração Muscular , Cálcio/farmacologia
5.
Front Pharmacol ; 15: 1298919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303987

RESUMO

Introduction: Recent studies suggest that calcium channel blockers (CCBs) could reduce the risk of active tuberculosis and improve clinical outcomes. We aimed to synthesize the evidence regarding the effect of CCBs on the risk of developing active tuberculosis and mortality. Methods: We systematically searched for observational studies and clinical trials published in six databases until 31 August 2023, following a PECO/PICO strategy. Results: We included eight observational studies, 4,020,830 patients, among whom 241,761 had diabetes mellitus and 30,397 had active tuberculosis. According to our results, CCBs reduce the risk of developing active tuberculosis by 29% (RR 0.71; 95% CI 0.67-0.75) in patients with and without diabetes mellitus. However, CCBs do not show any benefit in terms of tuberculosis-related mortality (RR 1.00; 95% CI 0.98-1.02). For both outcomes, no statistical heterogeneity was found (I2 = 0, p > 0.10). This protective effect of CCBs on the risk of active tuberculosis remained independent of the type of patient (with diabetes mellitus vs. general population) or the class of CCB administered (DHP-CCB vs. non-DHP-CCB) (test for subgroup differences I2 = 0, p > 0.10). However, this beneficial effect was more significant among the general population (RR 0.70; 95% CI 0.66-0.74) compared to patients with diabetes mellitus (RR 0.72; 95% CI 0.61-0.86) and among those patients treated with DHP-CCBs (RR 0.69; 95% CI 0.63-0.74) compared to patients treated with non-DHP-CCBs (RR 0.72; 95% CI 0.67-0.78). Conclusion: CCBs may reduce the risk of active TB in patients with diabetes and the general population. On the contrary, CCBs do not seem to have a protective effect on tuberculosis-related mortality. However, more evidence is still needed. We recommend developing clinical trials to verify these findings, including more diverse populations. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=352129].

6.
Curr Neuropharmacol ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37581322

RESUMO

BACKGROUND: Voltage-gated calcium channels (VGCCs) play an important role in pain development and maintenance. As Cav2.2 and Cav3.2 channels have been identified as potential drug targets for analgesics, the participation of Cav2.3 (that gives rise to R-type calcium currents) in pain and analgesia remains incompletely understood. OBJECTIVE: Identify the participation of Cav2.3 in pain and analgesia. METHODS: To map research in this area as well as to identify any existing gaps in knowledge on the potential role of Cav2.3 in pain signalling, we conducted this scoping review. We searched PubMed and SCOPUS databases, and 40 articles were included in this study. Besides, we organized the studies into 5 types of categories within the broader context of the role of Cav2.3 in pain and analgesia. RESULTS: Some studies revealed the expression of Cav2.3 in pain pathways, especially in nociceptive neurons at the sensory ganglia. Other studies demonstrated that Cav2.3-mediated currents could be in-hibited by analgesic/antinociceptive drugs either indirectly or directly. Some articles indicated that Cav2.3 modulates nociceptive transmission, especially at the pre-synaptic level at spinal sites. There are studies using different rodent pain models and approaches to reduce Cav2.3 activity or expression and mostly demonstrated a pro-nociceptive role of Cav2.3, despite some contradictory findings and deficiencies in the description of study design quality. There are three studies that reported the association of single-nucleotide polymorphisms in the Cav2.3 gene (CACNA1E) with postoperative pain and opioid consumption as well as with the prevalence of migraine in patients. CONCLUSION: Cav2.3 is a target for some analgesic drugs and has a pro-nociceptive role in pain.

7.
Biomedicines ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37509509

RESUMO

Asthma is a condition in which a person's airways become inflamed, narrowed, and produce greater amounts of mucus than normal. It can cause shortness of breath, chest pain, coughing, or wheezing. In some cases, symptoms may be exacerbated. Thus, the current study was designed to determine the mechanism of action of 6-aminoflavone (6-NH2F) in ex vivo experiments, as well as to determine its toxicity in acute and sub-chronic murine models. Tissues were pre-incubated with 6-NH2F, and concentration-response curves to carbachol-induced contraction were constructed. Therefore, tracheal rings pre-treated with glibenclamide, 2-aminopyridine, or isoproterenol were contracted with carbachol (1 µM), then 6-NH2F relaxation curves were obtained. In other sets of experiments, to explore the calcium channel role in the 6-NH2F relaxant action, tissues were contracted with KCl (80 mM), and 6-NH2F was cumulatively added to induce relaxation. On the other hand, tissues were pre-incubated with the test sample, and after that, CaCl2 concentration-response curves were developed. In this context, 6-NH2F induced significant relaxation in ex vivo assays, and the effect showed a non-competitive antagonism pattern. In addition, 6-NH2F significantly relaxed the contraction induced by KCl and CaCl2, suggesting a potential calcium channel blockade, which was corroborated by in silico molecular docking that was used to approximate the mode of interaction with the L-type Ca2+ channel, where 6-NH2F showed lower affinity energy when compared with nifedipine. Finally, toxicological studies revealed that 6-NH2F possesses pharmacological safety, since it did not produce any toxic effect in both acute and sub-acute murine models. In conclusion, 6-aminoflavone exerted significant relaxation through calcium channel blockade, and the compound seems to be safe.

8.
Toxins (Basel) ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37104176

RESUMO

The Buthidae family of scorpions consists of arthropods with significant medical relevance, as their venom contains a diverse range of biomolecules, including neurotoxins that selectively target ion channels in cell membranes. These ion channels play a crucial role in regulating physiological processes, and any disturbance in their activity can result in channelopathies, which can lead to various diseases such as autoimmune, cardiovascular, immunological, neurological, and neoplastic conditions. Given the importance of ion channels, scorpion peptides represent a valuable resource for developing drugs with targeted specificity for these channels. This review provides a comprehensive overview of the structure and classification of ion channels, the action of scorpion toxins on these channels, and potential avenues for future research. Overall, this review highlights the significance of scorpion venom as a promising source for discovering novel drugs with therapeutic potential for treating channelopathies.


Assuntos
Canalopatias , Venenos de Escorpião , Animais , Humanos , Escorpiões/química , Canalopatias/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Canais Iônicos/metabolismo , Desenvolvimento de Medicamentos , Venenos de Escorpião/química
9.
Toxicon X ; 18: 100151, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36873112

RESUMO

Venoms from tarantulas contain low molecular weight vasodilatory compounds whose biological action is conceived as part of the envenomation strategy due to its propagative effects. However, some properties of venom-induced vasodilation do not match those described by such compounds, suggesting that other toxins may cooperate with these ones to produce the observed biological effect. Owing to the distribution and function of voltage-gated ion channels in blood vessels, disulfide-rich peptides isolated from venoms of tarantulas could be conceived into potential vasodilatory compounds. However, only two peptides isolated from spider venoms have been investigated so far. This study describes for the first time a subfraction containing inhibitor cystine knot peptides, PrFr-I, obtained from the venom of the tarantula Poecilotheria regalis. This subfraction induced sustained vasodilation in rat aortic rings independent of vascular endothelium and endothelial ion channels. Furthermore, PrFr-I decreased calcium-induced contraction of rat aortic segments and reduced extracellular calcium influx to chromaffin cells by the blockade of L-type voltage-gated calcium channels. This mechanism was unrelated to the activation of potassium channels from vascular smooth muscle, since vasodilation was not affected in the presence of TEA, and PrFr-I did not modify the conductance of the voltage-gated potassium channel Kv10.1. This work proposes a new envenomating function of peptides from venoms of tarantulas, and establishes a new mechanism for venom-induced vasodilation.

10.
Dig Dis ; 41(5): 822-832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36646066

RESUMO

BACKGROUND: Topical treatments and botulinum toxin injections are valid options for the management of patients with chronic anal fissures (CAF), but little is known about the efficacy of these techniques in long-term follow-up. The aim of this meta-analysis was to evaluate the effectiveness, given to clinical outcomes, of medical treatments with calcium antagonists, nitroglycerin, and botulinum toxin on CAF treatment in adults. METHOD: A systemic review and meta-analysis developed according to PRISMA [PLoS Med. 2009 Jul 21;6(7):e1000100; BMJ. 2010 Mar 23;340:c332] and registered in PROSPERO (Registration number: CRD42020120386). A systematic literature search was conducted through MEDLINE, EMBASE, Web of Science, and Cochrane Library databases. Randomized control trials that compared medical treatment were identified; publications had to have a clinical definition of CAF with at least one of the following signs or symptoms: visible sphincter fibers at the base of the fissure, anal papillae, sentinel piles, and indurated margins. The symptoms had to be chronic for at least 4 weeks. Data were independently extracted for each study, and a meta-analysis was drawn using fixed- and random-effects models. RESULTS: 17 randomized trials met the inclusion criteria. Diltiazem showed a superior effect compared with glycerin (RR = 1.16 [95% CI = 1.05-1.30]; I2 = 18%) and with fewer adverse effects (RR = 0.13 [95% CI = 0.04-0.042]; I2 = 87%). Similar results were evidenced with the use of nifedipine compared with lidocaine (RR = 4.53 [95% CI = 2.99-6.86]; I2 = 28%). Botulinum toxin did not show statistically significant differences compared to glycerin (RR = 0.81 [95% CI = 0.02-29.36]; I2 = 93%) or isosorbide dinitrate (RR = 1.45 [95% CI = 0.32-6.54]; I2 = 85%). Regarding recurrence, nifedipine was superior to lidocaine (RR = 0.18 [95% CI = 0.08-0.44]; I2 = 31%). CONCLUSIONS: Calcium channel blockers performed well regarding the healing of CAF when compared to others in long-term follow-up. The superiority of botulinum toxin was not evidenced compared to topical treatments. More studies are needed to better assess recurrence rates.


Assuntos
Fissura Anal , Adulto , Humanos , Fissura Anal/tratamento farmacológico , Nifedipino/uso terapêutico , Glicerol/uso terapêutico , Resultado do Tratamento , Nitroglicerina/uso terapêutico , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA