Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1427: 107-114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322341

RESUMO

Heart failure (HF) is a prevalent disease in elderly population. Potentiation of the ventilatory chemoreflex drive plays a pivotal role in disease progression, at least in part, through their contribution to the generation/maintenance of breathing disorders. Peripheral and central chemoreflexes are mainly regulated by carotid body (CB) and the retrotrapezoid nuclei (RTN), respectively. Recent evidence showed an enhanced central chemoreflex drive in rats with nonischemic HF along with breathing disorders. Importantly, increase activity from RTN chemoreceptors contribute to the potentiation of central chemoreflex response to hypercapnia. The precise mechanism driving RTN potentiation in HF is still elusive. Since interdependency of RTN and CB chemoreceptors has been described, we hypothesized that CB afferent activity is required to increase RTN chemosensitivity in the setting of HF. Accordingly, we studied central/peripheral chemoreflex drive and breathing disorders in HF rats with and without functional CBs (CB denervation). We found that CB afferent activity was required to increase central chemoreflex drive in HF. Indeed, CB denervation restored normal central chemoreflex drive and reduced the incidence of apneas by twofold. Our results support the notion that CB afferent activity plays an important role in central chemoreflex potentiation in rats with HF.


Assuntos
Corpo Carotídeo , Insuficiência Cardíaca , Idoso , Ratos , Humanos , Animais , Células Quimiorreceptoras/fisiologia , Corpo Carotídeo/fisiologia , Fenômenos Fisiológicos Respiratórios , Hipercapnia
2.
Brain Struct Funct ; 227(8): 2667-2679, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36109371

RESUMO

Orexinergic (OX) neurons in the lateral hypothalamus (LH), perifornical area (PFA) and dorsomedial hypothalamus (DMH) play a role in the hypercapnic ventilatory response, presumably through direct inputs to central pattern generator sites and/or through interactions with other chemosensitive regions. OX neurons can produce and release orexins, excitatory neuropeptides involved in many functions, including physiological responses to changes in CO2/pH. Thus, in the present study, we tested the hypothesis that different nuclei (LH, PFA and DMH) where the orexinergic neurons are located, show distinct activation by CO2 during the light-dark cycle phases. For this purpose, we evaluated the Fos and OXA expression by immunohistochemistry to identify neurons that co-localize Fos + OXA in the LH, LPeF, MPeF and DMH in the light-inactive and dark-active phase in Wistar rats subjected to 3 h of normocapnia or hypercapnia (7% CO2). Quantitative analyses of immunoreactive neurons show that hypercapnia caused an increase in the number of neurons expressing Fos in the LH, LPeF, MPeF and DMH in the light and dark phases. In addition, the number of Fos + OXA neurons increased in the LPeF and DMH independently of the phases of the diurnal cycle; whereas in the MPeF, this increase was observed exclusively in the light phase. Thus, we suggest that OX neurons are selectively activated by hypercapnia throughout the diurnal cycle, reinforcing the differential role of nuclei in the hypothalamus during central chemosensitivity.


Assuntos
Dióxido de Carbono , Ritmo Circadiano , Hipotálamo , Animais , Ratos , Dióxido de Carbono/metabolismo , Hipercapnia/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar
3.
Front Physiol ; 13: 894921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733994

RESUMO

Immersion water sports involve long-term apneas; therefore, athletes must physiologically adapt to maintain muscle oxygenation, despite not performing pulmonary ventilation. Breath-holding (i.e., apnea) is common in water sports, and it involves a decrease and increases PaO2 and PaCO2, respectively, as the primary signals that trigger the end of apnea. The principal physiological O2 sensors are the carotid bodies, which are able to detect arterial gases and metabolic alterations before reaching the brain, which aids in adjusting the cardiorespiratory system. Moreover, the principal H+/CO2 sensor is the retrotrapezoid nucleus, which is located at the brainstem level; this mechanism contributes to detecting respiratory and metabolic acidosis. Although these sensors have been characterized in pathophysiological states, current evidence shows a possible role for these mechanisms as physiological sensors during voluntary apnea. Divers and swimmer athletes have been found to displayed longer apnea times than land sports athletes, as well as decreased peripheral O2 and central CO2 chemoreflex control. However, although chemosensitivity at rest could be decreased, we recently found marked sympathoexcitation during maximum voluntary apnea in young swimmers, which could activate the spleen (which is a reservoir organ for oxygenated blood). Therefore, it is possible that the chemoreflex, autonomic function, and storage/delivery oxygen organ(s) are linked to apnea in immersion water sports. In this review, we summarized the available evidence related to chemoreflex control in immersion water sports. Subsequently, we propose a possible physiological mechanistic model that could contribute to providing new avenues for understanding the respiratory physiology of water sports.

4.
Exp Physiol ; 104(5): 729-739, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758090

RESUMO

NEW FINDINGS: What is the central question of this study? Clinical reports have described and suggested central and peripheral respiratory abnormalities in Parkinson's disease (PD) patients; however, these reports have never addressed the occurrence of these abnormalities in an animal model. What is the main finding and its importance? A mouse model of PD has reduced neurokinin-1 receptor immunoreactivity in the pre-BÓ§tzinger complex and Phox2b-expressing neurons in the retrotrapezoid nucleus. The PD mouse has impairments of respiratory frequency and the hypercapnic ventilatory response. Lung collagen deposition and ribcage stiffness appear in PD mice. ABSTRACT: Parkinson's disease (PD) is a neurodegenerative motor disorder characterized by dopaminergic deficits in the brain. Parkinson's disease patients may experience shortness of breath, dyspnoea, breathing difficulties and pneumonia, which can be linked as a cause of morbidity and mortality of those patients. The aim of the present study was to clarify whether a mouse model of PD could develop central brainstem and lung respiratory abnormalities. Adult male C57BL/6 mice received bilateral injections of 6-hydroxydopamine (10 µg µl-1 ; 0.5 µl) or vehicle into the striatum. Ventilatory parameters were assessed in the 40 days after induction of PD, by whole-body plethysmography. In addition, measurements of respiratory input impedance (closed and opened thorax) were performed. 6-Hydroxydopamine reduced the number of tyrosine hydroxylase neurons in the substantia nigra pars compacta, the density of neurokinin-1 receptor immunoreactivity in the pre-BÓ§tzinger complex and the number of Phox2b neurons in the retrotrapezoid nucleus. Physiological experiments revealed a reduction in resting respiratory frequency in PD animals, owing to an increase in expiratory time and a blunted hypercapnic ventilatory response. Measurements of respiratory input impedance showed that only PD animals with the thorax preserved had increased viscance, indicating that the ribcage could be stiff in this animal model of PD. Consistent with stiffened ribcage mechanics, abnormal collagen deposits in alveolar septa and airways were observed in PD animals. Our data showed that our mouse model of PD presented with neurodegeneration in respiratory brainstem centres and disruption of lung mechanical properties, suggesting that both central and peripheral deficiencies contribute to PD-related respiratory pathologies.


Assuntos
Doença de Parkinson Secundária/fisiopatologia , Transtornos Respiratórios/etiologia , Transtornos Respiratórios/fisiopatologia , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Hipercapnia/fisiopatologia , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Neostriado , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Pletismografia , Alvéolos Pulmonares/metabolismo , Taxa Respiratória , Costelas/fisiopatologia
5.
Front Physiol ; 9: 1440, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30374309

RESUMO

Obstructive sleep apnea (OSA) is the most common form of sleep disordered breathing and is associated with wide array of cardiovascular morbidities. It has been proposed that during OSA, the respiratory control center (RCC) is affected by exaggerated afferent signals coming from peripheral/central chemoreceptors which leads to ventilatory instability and may perpetuate apnea generation. Treatments focused on decreasing hyperactivity of peripheral/central chemoreceptors may be useful to improving ventilatory instability in OSA patients. Previous studies indicate that oxidative stress and inflammation are key players in the increased peripheral/central chemoreflex drive associated with OSA. Recent data suggest that erythropoietin (Epo) could also be involved in modulating chemoreflex activity as functional Epo receptors are constitutively expressed in peripheral and central chemoreceptors cells. Additionally, there is some evidence that Epo has anti-oxidant/anti-inflammatory effects. Accordingly, we propose that Epo treatment during OSA may reduce enhanced peripheral/central chemoreflex drive and normalize the activity of the RCC which in turn may help to abrogate ventilatory instability. In this perspective article we discuss the potential beneficial effects of Epo administration on ventilatory regulation in the setting of OSA.

6.
Neuropharmacology ; 138: 47-56, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29857188

RESUMO

The brain regulates breathing in response to changes in tissue CO2/H+ via a process called central chemoreception. Neurons and astrocytes in the retrotrapezoid nucleus (RTN) function as respiratory chemoreceptors. The role of astrocytes in this process appears to involve CO2/H+-dependent release of ATP to enhance activity of chemosensitive RTN neurons. Considering that in most brain regions extracellular ATP is rapidly broken down to adenosine by ectonucleotidase activity and since adenosine is a potent neuromodulator, we wondered whether adenosine signaling contributes to RTN chemoreceptor function. To explore this possibility, we pharmacologically manipulated activity of adenosine receptors in the RTN under control conditions and during inhalation of 7-10% CO2 (hypercapnia). In urethane-anesthetized or unrestrained conscious rats, bilateral injections of adenosine into the RTN blunted the hypercapnia ventilatory response. The inhibitory effect of adenosine on breathing was blunted by prior RTN injection of a broad spectrum adenosine receptor blocker (8-PT) or a selective A1-receptor blocker (DPCPX). Although RTN injections of 8PT, DPCPX or the ectonucleotidase inhibitor ARL67156 did not affected baseline breathing in either anesthetized or awake rats. We did find that RTN application of DPCPX or ARL67156 potentiated the respiratory frequency response to CO2, suggesting a portion of ATP released in the RTN during high CO2/H+ is converted to adenosine and serves to limit chemoreceptor function. These results identify adenosine as a novel purinergic regulator of RTN chemoreceptor function during hypercapnia.


Assuntos
Adenosina/metabolismo , Hipercapnia/metabolismo , Bulbo/metabolismo , Receptores Purinérgicos P1/metabolismo , Reflexo/fisiologia , Respiração , Adenosina/administração & dosagem , Animais , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Hipercapnia/tratamento farmacológico , Masculino , Bulbo/efeitos dos fármacos , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos Wistar , Reflexo/efeitos dos fármacos , Respiração/efeitos dos fármacos , Vigília
7.
Exp Neurol ; 302: 46-56, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29305892

RESUMO

Parkinson's disease (PD) is characterized by a reduction in the number of dopaminergic neurons of the substantia nigra (SNpc), accompanied by motor and non-motor deficiencies such as respiratory failure. Here, our aim was to investigate possible neuronal communications between the SNpc and chemoreceptor neurons within the retrotrapezoid nucleus (RTN), in order to explain neurodegeneration and the loss of breathing function in the 6-OHDA PD animal model. Male Wistar rats received tracer injections in the SNpc, RTN and periaqueductal gray (PAG) regions to investigate the projections between those regions. The results showed that neurons of the SNpc project to the RTN by an indirect pathway that goes through the PAG region. In different groups of rats, reductions in the density of neuronal markers (NeuN) and the number of catecholaminergic varicosities in PAG, as well as reductions in the number of CO2-activated PAG neurons with RTN projections, were observed in a 6-OHDA model of PD. Physiological experiments showed that inhibition of the PAG by bilateral injection of muscimol did not produce resting breathing disturbances but instead reduced genioglossus (GGEMG) and abdominal (AbdEMG) muscle activity amplitude induced by hypercapnia in control rats that were urethane-anesthetized, vagotomized, and artificially ventilated. However, in a model of PD, we found reductions in resting diaphragm muscle activity (DiaEMG) and GGEMG frequencies, as well as in hypercapnia-induced DiaEMG, GGEMG and AbdEMG frequencies and GGEMG and AbdEMG amplitudes. Therefore, we can conclude that there is an indirect pathway between neurons of the SNpc and RTN that goes through the PAG and that there is a defect of this pathway in an animal model of PD.


Assuntos
Substância Cinzenta/patologia , Vias Neurais/patologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Substância Cinzenta Periaquedutal/patologia , Ventilação Pulmonar/fisiologia , Substância Negra/patologia , Animais , Células Quimiorreceptoras/fisiologia , Modelos Animais de Doenças , Agonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/metabolismo , Substância Cinzenta/metabolismo , Hipercapnia/etiologia , Masculino , Muscimol/farmacologia , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , Fosfopiruvato Hidratase/metabolismo , Ventilação Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar , Simpatolíticos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo
8.
J Physiol ; 595(8): 2479-2495, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28181258

RESUMO

KEY POINTS: Heart failure with preserved ejection fraction (HFpEF) is associated with disordered breathing patterns, and sympatho-vagal imbalance. Although it is well accepted that altered peripheral chemoreflex control plays a role in the progression of heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying deterioration of cardiac function in HFpEF are poorly understood. We found that central chemoreflex is enhanced in HFpEF and neuronal activation is increased in pre-sympathetic regions of the brainstem. Our data showed that activation of the central chemoreflex pathway in HFpEF exacerbates diastolic dysfunction, worsens sympatho-vagal imbalance and markedly increases the incidence of cardiac arrhythmias in rats with HFpEF. ABSTRACT: Heart failure (HF) patients with preserved ejection fraction (HFpEF) display irregular breathing, sympatho-vagal imbalance, arrhythmias and diastolic dysfunction. It has been shown that tonic activation of the central and peripheral chemoreflex pathway plays a pivotal role in the pathophysiology of HF with reduced ejection fraction. In contrast, no studies to date have addressed chemoreflex function or its effect on cardiac function in HFpEF. Therefore, we tested whether peripheral and central chemoreflexes are hyperactive in HFpEF and if chemoreflex activation exacerbates cardiac dysfunction and autonomic imbalance. Sprague-Dawley rats (n = 32) were subjected to sham or volume overload to induce HFpEF. Resting breathing variability, chemoreflex gain, cardiac function and sympatho-vagal balance, and arrhythmia incidence were studied. HFpEF rats displayed [mean ± SD; chronic heart failure (CHF) vs. Sham, respectively] a marked increase in the incidence of apnoeas/hypopnoeas (20.2 ± 4.0 vs. 9.7 ± 2.6 events h-1 ), autonomic imbalance [0.6 ± 0.2 vs. 0.2 ± 0.1 low/high frequency heart rate variability (LF/HFHRV )] and cardiac arrhythmias (196.0 ± 239.9 vs. 19.8 ± 21.7 events h-1 ). Furthermore, HFpEF rats showed increase central chemoreflex sensitivity but not peripheral chemosensitivity. Accordingly, hypercapnic stimulation in HFpEF rats exacerbated increases in sympathetic outflow to the heart (229.6 ± 43.2% vs. 296.0 ± 43.9% LF/HFHRV , normoxia vs. hypercapnia, respectively), incidence of cardiac arrhythmias (196.0 ± 239.9 vs. 576.7 ± 472.9 events h-1 ) and diastolic dysfunction (0.008 ± 0.004 vs. 0.027 ± 0.027 mmHg µl-1 ). Importantly, the cardiovascular consequences of central chemoreflex activation were related to sympathoexcitation since these effects were abolished by propranolol. The present results show that the central chemoreflex is enhanced in HFpEF and that acute activation of central chemoreceptors leads to increases of cardiac sympathetic outflow, cardiac arrhythmogenesis and impairment in cardiac function in rats with HFpEF.


Assuntos
Células Quimiorreceptoras/fisiologia , Diástole/fisiologia , Insuficiência Cardíaca/fisiopatologia , Hipercapnia/fisiopatologia , Volume Sistólico/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Insuficiência Cardíaca/metabolismo , Frequência Cardíaca/fisiologia , Hipercapnia/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley
9.
Auton Neurosci ; 179(1-2): 43-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23911533

RESUMO

We evaluated the effects of parasympathetic activation by pyridostigmine (PYR) on chemoreflex sensitivity in a rat model of heart failure (HF rats). HF rats demonstrated higher pulmonary ventilation (PV), which was not affected by PYR. When HF and control rats treated or untreated with PYR were exposed to 15% O2, all groups exhibited prompt increases in respiratory frequency (RF), tidal volume (TV) and PV. When HF rats were exposed to 10% O2 they showed greater PV response which was prevented by PYR. The hypercapnia triggered by either 5% CO2 or 10% CO2 promoted greater RF and PV responses in HF rats. PYR blunted the RF response in HF rats but did not affect the PV response. In conclusion, PYR prevented increased peripheral chemoreflex sensitivity, partially blunted central chemoreflex sensitivity and did not affect basal PV in HF rats.


Assuntos
Inibidores da Colinesterase/farmacologia , Insuficiência Cardíaca/fisiopatologia , Sistema Nervoso Parassimpático/fisiologia , Brometo de Piridostigmina/farmacologia , Animais , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Masculino , Sistema Nervoso Parassimpático/efeitos dos fármacos , Ventilação Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA