Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Primates ; 65(4): 235-241, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795206

RESUMO

Platyrrhines consume many species of arthropods in the order Orthoptera. Some species of orthopterans can produce chemical defenses that render them toxic or unpalatable and thus act as predator deterrents. These species include the stick grasshoppers (family Proscopiidae), which are widely distributed in the Caatinga biome in northeastern Brazil, which comprises part of the distribution of capuchin monkeys. Capuchin monkeys are omnivores and consume a wide variety of foods, including unpleasant-tasting, potentially toxic items, which they need to learn how to process. We describe the processing of stick grasshoppers (Stiphra sp.) by wild capuchin monkeys (Sapajus libidinosus) that live in Serra da Capivara National Park, Brazil, and compare how individuals of different age classes handle these potentially toxic food items. S. libidinosus predominantly avoided consuming the digestive tract, which contains toxic compounds, when feeding on stick grasshoppers. Immatures took longer than adults to process the stick grasshoppers, indicating that capuchins need to learn how to process the toxic digestive tract of these prey to avoid consuming it.


Assuntos
Gafanhotos , Animais , Gafanhotos/fisiologia , Brasil , Feminino , Masculino , Comportamento Alimentar , Cebinae/fisiologia
2.
Cells ; 12(18)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759481

RESUMO

Laurencia seaweed species synthesize a broad range of secondary metabolites, mainly terpenes (e.g., elatol), exhibiting diverse ecological roles, such as defense against fouling and herbivores. Recently, an intricate cellular machinery was described concerning terpenes biosynthetic pathways, storage inside corps en cerise (CC), and regulated exocytosis in these species. But for seaweeds in general, the proteins involved in transmembrane transport of secondary metabolites remain unknown. Assays with Rhodamine-123 and cyclosporine A (CSA) revealed the presence of ABC transporters in CC membrane of Laurencia dendroidea. In vivo incubation assays with CSA resulted in CC morphological changes, reduced intracellular elatol concentrations, and increased biofouling cover on the seaweed surface. Cultivation assays in the presence of a marine pathogenic bacteria induced the expression of ABC proteins belonging to the subfamilies ABCB, ABCD, ABCF, and ABCG. The latter subfamily is known to be associated with the transport of plant terpenes. Our results shed new light on the role of ABC proteins in key mechanisms of the defensive system in seaweeds against fouling and herbivory.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Alga Marinha , Metabolismo Secundário , Ciclosporina , Terpenos
3.
Rev. biol. trop ; 70(1)dic. 2022.
Artigo em Inglês | SaludCR, LILACS | ID: biblio-1387716

RESUMO

Abstract Introduction: The study of herbivory is fundamental in ecology and includes how plants invest in strategies and mechanisms to reduce herbivore damage. However, there is still a lack of information about how the environment, plant density, and functional traits influence herbivory in aquatic ecosystems. Objective: To assess if there is a relationship between herbivory, environmental variables, and plant traits two species of Montrichardia, a neotropical aquatic plant. Methods: In September 2018, we studied 78 specimens of Montrichardia arborescens and 18 of Montrichardia linifera, in 18 sites in Melgaço, Pará, Brazil. On each site, we measured water depth, distance to the margin, and plant density. From plants, we measured plant height and leaf thickness, and photographed the leaves to calculate the specific leaf area and percentage herbivory. To identify anatomical structures, we collected fully expanded leaves from three individuals per quadrat. Results: For M. arborescens, plants with thicker leaves and higher specific leaf area have less herbivore damage. For M. linifera, plants from deeper sites and with thicker leaves had more herbivore damage, while plants that grew farther from the margin had less damage. We found anatomical structures related to defense, such as idioblast cells with phenolic compounds, and cells with solid inclusions that can contribute to avoiding severe damage. Conclusions: Herbivory in these Montrichardia species can be explained by a combination of plant and environmental traits (patch isolation and water depth). The main plant traits are leaf thickness and area, but chemical compounds and solid inclusions also help Montrichardia to sustain less damage than other macrophytes.


Resumen Introducción: La herbivoría es fundamental para comprender cómo las plantas invierten en diferentes estrategias para evitar la depredación, lo que implica diferentes mecanismos de defensa. Factores relacionados con el medio ambiente, la densidad de plantas y/o los rasgos funcionales de las plantas pueden influir en la herbivoría en los ecosistemas acuáticos. Sin embargo, todavía falta información sobre cómo esos factores influyen en la herbivoría en los ecosistemas acuáticos y pueden contribuir a la carga de herbivoría. Objetivo: Evaluar si existe una relación entre la herbivoría y las variables ambientales (p. ej., profundidad del agua y distancia al margen), los factores ecológicos (densidad de plantas) y los rasgos estructurales de las plantas (altura, grosor de la hoja y área foliar) e indicar estructuras anatómicas que actúen junto con los rasgos estructurales en el sistema de defensa de especies de Montrichardia. Métodos: Se evaluaron 96 individuos de Montrichardia spp. (78 de M. arborescens y 18 de M. linifera, en 18 sitios) recolectados en septiembre de 2018. En cada sitio, se midió la profundidad del agua, la distancia al margen y la densidad de plantas. De los individuos, medimos la altura de la planta, el grosor de la hoja y fotografiamos las hojas para calcular el área foliar específica y la cantidad de herbivoría (en porcentaje). Para identificar las estructuras anatómicas relacionadas con la defensa de las plantas, se recogió hojas completamente expandidas de tres individuos por cuadrante. Resultados: Para M. arborescens, las plantas con hojas más gruesas y mayor área foliar específica tienen menos daño por herbivoría. Para M. linifera, las plantas con hojas más gruesas y que habitan en sitios más profundos tienen más daño por herbívoros, mientras que las plantas más alejadas del margen tienen menos daño por herbívoros. Se encontró estructuras anatómicas relacionadas con la defensa, como células idioblásticas con compuestos fenólicos y células con inclusiones sólidas que pueden contribuir a evitar daños severos en las características de las hojas. Conclusiones: Nuestros resultados indican que la herbivoría en las especies de Montrichardia podría explicarse por una combinación de características ambientales (aislamiento del parche y profundidad del agua) y de la planta. Descubrimos que los rasgos de las hojas eran factores importantes que impulsaban los cambios en la carga de herbivoría, especialmente el grosor de las hojas y el área foliar específica. Además, las especies de Montrichardia invierten en compuestos químicos e inclusiones sólidas para evitar daños graves en las hojas y, por lo tanto, pueden sufrir menos daños que otras especies de macrófitos.


Assuntos
Flora Aquática , Herbivoria , Defesa das Plantas contra Herbivoria , Ecossistema Amazônico
4.
Oecologia ; 199(4): 845-857, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35857113

RESUMO

The risk of predation and the costs and benefits of diverse anti-predator strategies can shift across the life stages of an organism. Yet, empirical examples of ontogenetic switches in defense mechanisms are scarce. Anurans represent an alleged exception; previous meta-analytic work suggests that unpalatability of developing anurans is "rare", whereas adult anurans in many lineages are well defended by toxic and/or unpalatable skin secretions. Here, we revisit the question of the unpalatability of anuran young in a meta-analysis of the relative proportion of prey consumed within 922 predation tests, including 135 anuran species. We tested the hypotheses that a predator's propensity to consume anuran young depends on (1) prey family, (2) predator manipulation strategy, and (3) prey ontogenetic stage. We used a binomial mixed model approach with considerations for multiple effect sizes within studies to evaluate the log odds ratio of the proportion of prey consumed by individual predators. Prey consumption was highly variable, but toads (Bufonidae) were consumed in lower proportions. Chewing invertebrates consumed more anuran prey than biting vertebrates. Late stage tadpoles were more vulnerable to predation than other stages of anuran ontogeny. However, more studies are needed to unravel the roles of development and evolutionary history in the chemical ecology of anuran young. This synthesis provides clear meta-analytic evidence that relative unpalatability is an important component in the anti-predator defenses of young in some anuran families, calling into question the degree to which chemically defended anuran families undergo ontogenetic switches in anti-predator strategies.


Assuntos
Comportamento Predatório , Paladar , Animais , Bufonidae , Larva
5.
J Exp Zool A Ecol Integr Physiol ; 337(5): 537-546, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201668

RESUMO

Sequestration of chemical defenses from dietary sources is dependent on the availability of compounds in the environment and the mechanism of sequestration. Previous experiments have shown that sequestration efficiency varies among alkaloids in poison frogs, but little is known about the underlying mechanism. The aim of this study was to quantify the extent to which alkaloid sequestration and modification are dependent on alkaloid availability and/or sequestration mechanism. To do this, we administered different doses of histrionicotoxin (HTX) 235A and decahydroquinoline (DHQ) to captive-bred Adelphobates galactonotus and measured alkaloid quantity in muscle, kidney, liver, and feces. HTX 235A and DHQ were detected in all organs, whereas only DHQ was present in trace amounts in feces. For both liver and skin, the quantity of alkaloid accumulated increased at higher doses for both alkaloids. Accumulation efficiency in the skin increased at higher doses for HTX 235A but remained constant for DHQ. In contrast, the efficiency of HTX 235A accumulation in the liver was inversely related to dose and a similar, albeit statistically nonsignificant, pattern was observed for DHQ. We identified and quantified the N-methylation of DHQ in A. galactonotus, which represents a previously unknown example of alkaloid modification in poison frogs. Our study suggests that variation in alkaloid composition among individuals and species can result from differences in sequestration efficiency related to the type and amount of alkaloids available in the environment.


Assuntos
Alcaloides , Venenos , Alcaloides/química , Animais , Anuros/fisiologia , Metilação , Quinolinas
6.
J Exp Zool A Ecol Integr Physiol, v. 337, n. 5, p. 537-546, jun. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4250

RESUMO

Sequestration of chemical defenses from dietary sources is dependent on the availability of compounds in the environment and the mechanism of sequestration. Previous experiments have shown that sequestration efficiency varies among alkaloids in poison frogs, but little is known about the underlying mechanism. The aim of this study was to quantify the extent to which alkaloid sequestration and modification are dependent on alkaloid availability and/or sequestration mechanism. To do this, we administered different doses of histrionicotoxin (HTX) 235A and decahydroquinoline (DHQ) to captive-bred Adelphobates galactonotus and measured alkaloid quantity in muscle, kidney, liver, and feces. HTX 235A and DHQ were detected in all organs, whereas only DHQ was present in trace amounts in feces. For both liver and skin, the quantity of alkaloid accumulated increased at higher doses for both alkaloids. Accumulation efficiency in the skin increased at higher doses for HTX 235A but remained constant for DHQ. In contrast, the efficiency of HTX 235A accumulation in the liver was inversely related to dose and a similar, albeit statistically nonsignificant, pattern was observed for DHQ. We identified and quantified the N-methylation of DHQ in A. galactonotus, which represents a previously unknown example of alkaloid modification in poison frogs. Our study suggests that variation in alkaloid composition among individuals and species can result from differences in sequestration efficiency related to the type and amount of alkaloids available in the environment.

7.
PeerJ ; 9: e12031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616600

RESUMO

Several experimental studies on aquatic plants have reported the prevalence of chemical defense mechanism against herbivory, as opposed to structural, life-forms or other traits. Here, our laboratory feeding experiments and integrative analysis explored the relationship among palatability (fresh or reconstituted plants used as artificial diet) and various chemical/nutritional traits (i.e., contents of dry mass, ash, nitrogen, protein, and phenols) of diverse aquatic plants and their susceptibility to consumption by the generalist gastropod Biomphalaria glabrata. Biomphalaria glabrata consumed all of the assayed aquatic plants in a hierarchical yet generalized way, with the consumption of fresh plants, their reconstituted forms and defensive properties of lipophilic extracts not being significantly correlated with plant physical or chemical traits to determine the feeding preference of the gastropod. Our results do not reveal a prevalence for a specific plant attribute contributing to herbivory. Instead, they indicate that the susceptibility of aquatic plants to generalist consumers is probably related to a combination of their chemical and physical properties, resulting in moderate grazing rates by generalist consumers.

8.
J Mass Spectrom ; 56(9): e4779, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34407561

RESUMO

Novichok is one of the most feared and controversial nerve agents, which existence was confirmed only after the Salisbury attack in 2018. A new attack on August 2020, in Russia, was confirmed. After the 2018 attack, the agent was included in the list of the most dangerous chemicals of the Chemical Weapons Convention (CWC). However, information related to its electron ionization mass spectrometry (EI/MS), essential for unambiguous identification, is scarce. Therefore, investigations about Novichok EI/MS are urgent. In this work, we employed Born-Oppenheimer molecular dynamics through the Quantum Chemistry Electron Ionization Mass Spectrometry (QCEIMS) method to simulate and rationalize the EI/MS spectra and fragmentation pathways of 32 Novichok molecules recently incorporated into the CWC. The comparison of additional simulations with the measured EI spectrum of another Novichok analog is very favorable. A general scheme of the fragmentation pathways derived from simulation results was presented. The present results will be useful for elucidation and prediction of the EI spectra and fragmentation pathways of the dangerous Novichok nerve agent.


Assuntos
Agentes Neurotóxicos , Organofosfatos , Elétrons , Espectrometria de Massas , Agentes Neurotóxicos/química , Organofosfatos/química
9.
Molecules ; 26(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916795

RESUMO

In terms of the domestication process in murtilla, studies have found changes in the concentration of phenolic compounds, with reduction of chemical defense of plants, depending on the change in the feeding behavior of insects. Thus, we hypothesized that the domestication of Ugni molinae decreases the content of phenolic compounds and modifies the feeding preference of Chilesia rudis larvae. Leaves of three parental ecotypes and four cultivated ecotypes were used in preference experiments to evaluate the mass gain and leaves consumption of larvae. Phenolic extracts from leaves of U. molinae were analyzed by HPLC. Identified compounds were incorporated in an artificial diet to assess their effect on mass gain, consumption, and survival of the larvae. The presence of phenolic compounds in bodies and feces was also evaluated. In terms of choice assays, larvae preferred parental ecotypes. Regarding compounds, vanillin was the most varied between the ecotypes in leaves. However, plant domestication did not show a reduction in phenolic compound concentration of the ecotypes studied. Furthermore, there was no clear relation between phenolic compounds and the performance of C. rudis larvae. Whether this was because of sequestration of some compounds by larvae is unknown. Finally, results of this study could also suggest that studied phenolic compounds have no role in the C. rudis larvae resistance in this stage of murtilla domestication process.


Assuntos
Domesticação , Lepidópteros/fisiologia , Myrtaceae/fisiologia , Animais , Bioensaio , Dieta , Ecótipo , Fezes/química , Estimativa de Kaplan-Meier , Larva/fisiologia , Fenóis/isolamento & purificação , Folhas de Planta/fisiologia , Análise de Regressão
10.
J Chem Ecol ; 47(6): 544-551, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33796949

RESUMO

The composition of chemical weaponry of termite soldiers show interspecific and intraspecific variation. However, spatial effects on the qualitative and quantitative compositions of these substances in Neotropical termites are poorly known. Hexane extracts of heads and the defensive secretion of soldiers of Constrictotermes cyphergaster from four localities in Northeast Brazil were analyzed by gas chromatography and mass spectrometry. Chemical analysis allowed the detection of 54 compounds from the head extract and from the direct extraction of the defensive secretion of soldiers, and the percentage of common substances and the presence of exclusive substances varied depending on the spatial distance between colonies. The profile of the chemical armament of soldiers consists basically of terpenoids: monoterpenes (45.53%-71.97 - for head extract and 57.41% - 78.56 for secretion) and sesquiterpenes (19.69% - 35.78% for head extract and 18.41% - 33.31%for secretion). In general, the main component of the chemical arsenal, regardless of the methodology used for extraction, was α-pinene (27.98-50.44%). Two chemotypes were identified based on chemical differences between populations of ecoregions with distinct spatial-environmental and climate characteristics: (1) α-pinene <33%; (2) α-pinene >33% for both extracts (head and secretion). The results reveal a similar pattern of chemical differentiation for soldiers in both extracts (head and secretion), with increasing differences as a function of distance between the analyzed colonies.


Assuntos
Isópteros/metabolismo , Animais , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA