Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur J Mass Spectrom (Chichester) ; 30(2): 125-132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523368

RESUMO

Lichens are recognized by their unique compounds and diverse applications in food, medicines, and cosmetics. Using ultra-high pressure liquid chromatography, coupled with a high-resolution mass spectrometer, metabolomic profiling of the lichen Parmotrema perlatum, from a methanolic extract, was performed. Based on characteristic fragmentation patterns, twenty-five lichenic substances were tentatively identified including 5 depsides, 12 depsidones, 2 diphenyl ethers, 1 aromatic considered as possible artifact, 1 dibenzofuran, 1 carbohydrate, 1 organic acid, and 2 undefined compounds. To the best of our knowledge, this is a more complete report of their phytochemistry from P perlatum. Our findings of the P perlatum profile may contribute and complement the current data of the Parmotrema genus.


Assuntos
Lactonas , Líquens , Parmeliaceae , Líquens/química , Espectrometria de Massas por Ionização por Electrospray , Chile , Depsídeos , Cromatografia Líquida de Alta Pressão/métodos
2.
Bull Entomol Res ; 114(1): 124-133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268108

RESUMO

Neotropical cyclocephaline beetles, a diverse group of flower-loving insects, significantly impact natural and agricultural ecosystems. In particular, the genus Cyclocephala, with over 350 species, displays polymorphism and cryptic complexes. Lacking a comprehensive DNA barcoding framework, accessible tools for species differentiation are needed for research in taxonomy, ecology, and crop management. Moreover, cuticular hydrocarbons are believed to be involved in sexual recognition mechanisms in these beetles. In the present study we examined the cuticular chemical profiles of six species from the genus Cyclocephala and two populations of Erioscelis emarginata and assessed their efficiency in population, species, and sex differentiation. Overall we identified 74 compounds in cuticular extracts of the selected taxa. Linear alkanes and unsaturated hydrocarbons were prominent, with ten compounds between them explaining 85.6% of species dissimilarity. Although the cuticular chemical profiles efficiently differentiated all investigated taxa, only C. ohausiana showed significant cuticular profile differences between sexes. Our analysis also revealed two E. emarginata clades within a larger group of 'Cyclocephala' species, but they were not aligned with the two studied populations. Our research underscores the significance of cuticular lipid profiles in distinguishing selected cyclocephaline beetle species and contemplates their potential impact as contact pheromones on sexual segregation and speciation.


Assuntos
Besouros , Animais , Besouros/genética , Ecossistema , Hidrocarbonetos , Feromônios/química , Lipídeos/análise
3.
J Chem Ecol ; 49(11-12): 611-641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856061

RESUMO

Pheromones mediate species-level communication in the search for mates, nesting, and feeding sites. Although the role of pheromones has long been discussed by various authors, their existence was not proven until the mid-twentieth century when the first sex pheromone was identified. From this finding, much has been speculated about whether this communication mechanism has acted as a regulatory agent in the process of speciation, competition, and sexual selection since it acts as an intraspecific barrier. Chrysomelidae is one of the major Phytophaga lineages, with approximately 40,000 species. Due to this immense diversity the internal relationships remain unstable when analyzed only with morphological data, consequently recent efforts have been directed to molecular analyses to establish clarity for the relationships and found their respective monophyly. Therefore, our goals are twofold 1) to synthesize the current literature on Chrysomelidae sex pheromones and 2) to test whether Chrysomelidae sex pheromones and their chemical structures could be used in phylogenetic analysis for the group. The results show that, although this is the first analysis in Chrysomelidae to use pheromones as a phylogenetic character, much can be observed in agreement with previous analyses, thus confirming that pheromones, when known in their entirety within lineages, can be used as characters in phylogenetic analyses, bringing elucidation to the relationships and evolution of organisms.


Assuntos
Besouros , Atrativos Sexuais , Animais , Feromônios , Filogenia , Atrativos Sexuais/química
4.
Front Plant Sci ; 13: 854842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498703

RESUMO

Natural products produced by plants are one of the most investigated natural sources, which substantially contributed to the development of the natural products field. Even though these compounds are widely explored, the literature still lacks comprehensive investigations aiming to explore the evolution of secondary metabolites produced by plants, especially if classical methodologies are employed. The development of sensitive hyphenated techniques and computational tools for data processing has enabled the study of large datasets, being valuable assets for chemosystematic studies. Here, we describe a strategy for chemotaxonomic investigations using the Malpighiaceae botanical family as a model. Our workflow was based on MS/MS untargeted metabolomics, spectral searches, and recently described in silico classification tools, which were mapped into the latest molecular phylogeny accepted for this family. The metabolomic analysis revealed that different ionization modes and extraction protocols significantly impacted the chemical profiles, influencing the chemotaxonomic results. Spectral searches within public databases revealed several clades or genera-specific molecular families, being potential chemical markers for these taxa, while the in silico classification tools were able to expand the Malpighiaceae chemical space. The classes putatively annotated were used for ancestral character reconstructions, which recovered several classes of metabolites as homoplasies (i.e., non-exclusive) or synapomorphies (i.e., exclusive) for all sampled clades and genera. Our workflow combines several approaches to perform a comprehensive evolutionary chemical study. We expect it to be used on further chemotaxonomic investigations to expand chemical knowledge and reveal biological insights for compounds classes in different biological groups.

5.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408634

RESUMO

Myrciaria (Myrtaceae) species have been well investigated due to their chemical and biological relevance. The present work aimed to carry out the chemotaxonomic study of essential oils of the species M. dubia, M. floribunda, and M. tenella, sampled in the Brazilian Amazon and compare them with the volatile compositions from other Myrciaria species reported to Brazil and Colombia. The leaves of six Myrciaria specimens were collected (PA, Brazil) during the dry season, and their chemical compositions were analyzed by gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID). The main compounds identified in the essential oils were monoterpenes with pinane and menthane skeletons, followed by sesquiterpenes with caryophyllane and cadinane skeletons. Among the sampled Myrciaria specimens, five chemical profiles were reported for the first time: profile I (M. dubia, α-pinene, 54.0-67.2%); profile II (M. floribunda, terpinolene 23.1%, α-phellandrene 17.7%, and γ-terpinene 8.7%); profile III (M. floribunda, γ-cadinene 17.5%, and an unidentified oxygenated sesquiterpene 15.0%); profile IV (M. tenella, E-caryophyllene 43.2%, and α-humulene 5.3%); and profile V (M. tenella, E-caryophyllene 19.1%, and caryophyllene oxide 41.1%). The Myrciaria chemical profiles showed significant variability in extraction methods, collection sites, plant parts, and genetic aspects.


Assuntos
Myrtaceae , Óleos Voláteis , Sesquiterpenos , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/análise , Óleos Voláteis/química , Sesquiterpenos/análise
6.
Nat Prod Res ; 36(9): 2399-2403, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33034232

RESUMO

Nasutitermes spp. soldier defensive secretion has a toxic and repellent effect against predators. Chemical profile characterization of this secretion is an interesting tool to differentiate similar termite species. This study aimed to determine defensive secretion composition of Nasutitermes spp. soldier and to apply chemotaxonomy tool for the unambiguous species identification. Fifteen volatile compounds were identified by gas chromatography-mass spectrometry. Multivariate analysis classified populations into three groups. Principal component (PCA), axis 1, was able to separate two groups: group I, colonies 1 and 2 (Nasutitermes corniger) and group II, colony 3 (Nasutitermes ephratae). Therefore, determination of defensive chemical secretion profile proved to be very useful in termite chemotaxonomy, since it was able to differentiate morphologically similar specimens.


Assuntos
Isópteros , Animais , Brasil , Cromatografia Gasosa-Espectrometria de Massas , Isópteros/química
7.
Mycologia ; 111(5): 832-856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31460851

RESUMO

Two new species and a new combination of Hypoxylon from Texas were identified and described based on morphological, multigene phylogenetic (ITS [nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2], 28S [5' 1200 bp of nuc 28S rDNA], RPB2 [partial second largest subunit of the DNA-directed RNA polymerase II], TUB2 [partial ß-tubulin]), and chemotaxonomic data. Hypoxylon olivaceopigmentum is characterized by its pulvinate to glomerate stromata, olivaceous KOH-extractable pigments, equilateral ascospores, and indehiscent perispore. Hypoxylon texense can be distinguished from morphologically similar species by its rust to dark brick KOH-extractable pigments and the high-performance liquid chromatography (HPLC) profile of its stromatal secondary metabolites. Hypoxylon hinnuleum is proposed as the sexual morph of Nodulisporium hinnuleum, featuring dark vinaceous glomerate stromata with dark brick KOH-extractable pigments composed of cohaerin-type azaphilones and smooth equilateral ascospores with indehiscent perispore. Based on these diagnostic characters, H. hinnuleum forms a complex with H. croceum and H. minicroceum. More than 50 ITS sequences with high identity originating from North American and East Asian environmental isolates formed a well-supported clade with the type of N. hinnuleum, demonstrating the widespread distribution of the species complex. In addition, updated descriptions and comprehensive illustrations with detailed information on the diagnostic features of H. fendleri and H. perforatum are provided. The multilocus phylogenetic reconstruction of Hypoxylon supported the status of the new species and broadened the knowledge about intergeneric relationships.


Assuntos
Microbiologia Ambiental , Filogenia , Esporos Fúngicos/citologia , Xylariales/classificação , Xylariales/isolamento & purificação , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Microscopia , Pigmentos Biológicos/análise , RNA Polimerase II/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Texas , Tubulina (Proteína)/genética , Xylariales/genética , Xylariales/fisiologia
8.
Metabolomics ; 15(2): 14, 2019 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-30830463

RESUMO

INTRODUCTION: Comparative analysis of metabolic features of plants has a high potential for determination of quality control of active ingredients, ecological or chemotaxonomic purposes. Specifically, the development of efficient and rapid analytical tools that allow the differentiation among species, subspecies and varieties of plants is a relevant issue. Here we describe a multivariate model based on LC-MS/MS fingerprinting capable of discriminating between subspecies and varieties of the medicinal plant Chamaecrista nictitans, a rare distributed species in Costa Rica. METHODS: Determination of the chemical fingerprint was carried out on a LC-MS (ESI-QTOF) in negative ionization mode, main detected and putatively identified compounds included proanthocyanidin oligomers, several flavonoid C- and O-glycosides, and flavonoid acetates. Principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA) and cluster analysis of chemical profiles were performed. RESULTS: Our method showed a clear discrimination between the subspecies and varieties of Chamaecrista nictitans, separating the samples into four fair differentiated groups: M1 = C. nictitans ssp. patellaria; M2 = C. nictitans ssp. disadena; M3 = C. nictitans ssp. nictitans var. jaliscensis and M4 = C. nictitans ssp. disadena var. pilosa. LC-MS/MS fingerprint data was validated using both morphological characters and DNA barcoding with ITS2 region. The comparison of the morphological characters against the chemical profiles and DNA barcoding shows a 63% coincidence, evidencing the morphological similarity in C. nictitans. On the other hand, genetic data and chemical profiles grouped all samples in a similar pattern, validating the functionality of our metabolomic approach. CONCLUSION: The metabolomic method described in this study allows a reliably differentiation between subspecies and varieties of C. nictitans using a straightforward protocol that lacks extensive purification steps.


Assuntos
Chamaecrista/química , Chamaecrista/metabolismo , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Análise por Conglomerados , Análise Discriminante , Análise Multivariada , Fenóis/química , Análise de Componente Principal/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
9.
Rev. bras. farmacogn ; 28(2): 228-230, Mar.-Apr. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-1042259

RESUMO

ABSTRACT Phytochemical investigation of the methanol extract of the aerial parts of Peucedanum chryseum (Boiss. & Heldr.) D.F.Chamb., Apiaceae, led to the isolation of a dihydrofuranochromone, cimifugin (1); a phloroacetophenone glucoside, myrciaphenone A (2); and a flavonoid glycoside, afzelin (3) along with two phenylacylated-flavonoid glycosides: rugosaflavonoid C (4), and isoquercitrin 6"-O-p-hydroxybenzoate (5). The structures of compounds 1-5 were elucidated by extensive 1D- and 2D-NMR spectroscopic analysis in combination with MS experiments and comparison with the relevant literature. All compounds are reported for the first time from this species and compounds 2, 4, and 5 from the genus Peucedanum and from Apiaceae.

10.
Phytochemistry ; 150: 93-105, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29571150

RESUMO

Vernonia sensu lato is the largest and most complex genus of the tribe Vernonieae (Asteraceae). The tribe is chemically characterized by the presence of sesquiterpene lactones and flavonoids. Over the years, several taxonomic classifications have been proposed for Vernonia s.l. and for the tribe; however, there has been no consensus among the researches. According to traditional classification, Vernonia s.l. comprises more than 1000 species divided into sections, subsections and series (sensu Bentham). In a more recent classification, these species have been segregated into other genera and some subtribes were proposed, while the genus Vernonia sensu stricto was restricted to 22 species distributed mainly in North America (sensu Robinson). In this study, species from the subtribes Vernoniinae, Lepidaploinae and Rolandrinae were analyzed by UHPLC-UV-HRMS followed by multivariate statistical analysis. Data mining was performed using unsupervised (HCA and PCA) and supervised methods (OPLS-DA). The HCA showed the segregation of the species into four main groups. Comparing the HCA with taxonomical classifications of Vernonieae, we observed that the groups of the dendogram, based on metabolic profiling, were in accordance with the generic classification proposed by Robinson and with previous phylogenetic studies. The species of the genera Stenocephalum, Stilpnopappus, Strophopappus and Rolandra (Group 1) were revealed to be more related to the species of the genus Vernonanthura (Group 2), while the genera Cyrtocymura, Chrysolaena and Echinocoryne (Group 3) were chemically more similar to the genera Lessingianthus and Lepidaploa (Group 4). These findings indicated that the subtribes Vernoniinae and Lepidaploinae are non-chemically homogeneous groups and highlighted the application of untargeted metabolomic tools for taxonomy and as indicators of species evolution. Discriminant compounds for the groups obtained by OPLS-DA were determined. Groups 1 and 2 were characterized by the presence of 3',4'-dimethoxyluteolin, glaucolide A and 8-tigloyloxyglaucolide A. The species of Groups 3 and 4 were characterized by the presence of putative acacetin 7-O-rutinoside and glaucolide B. Therefore, untargeted metabolomic approach combined with multivariate statistical analysis, as proposed herein, allowed the identification of potential chemotaxonomic markers, helping in the taxonomic classifications.


Assuntos
Asteraceae/química , Vernonia/química , Evolução Biológica , Brasil , Metabolômica , Análise Multivariada , América do Norte , Filogenia , Sesquiterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA