Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Viruses ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400042

RESUMO

Hibiscus is not native to Colombia but well suited to its arid soil and dry climates. A single hibiscus plant from Risaralda, showing black spots on upper and lower sides of its leaves, was collected for virome analysis using meta-transcriptomic high-throughput sequencing technology. Bioinformatic analysis identified 12.5% of the total reads in the Ribo-Zero cDNA library which mapped to viral genomes. BLAST searches revealed the presence of carlavirus, potexvirus, and of known members of the genera Betacarmovirus, Cilevirus, Nepovirus, and Tobamovirus in the sample; confirmed by RT-PCR with virus-specific primers followed by amplicon sequencing. Furthermore, in silico analysis suggested the possibility of a novel soymovirus, and a new hibiscus strain of citrus leprosis virus C2 in the mixed infection. Both RNA dependent RNA polymerase and coat protein gene sequences of the potex and carla viruses shared less than 72% nucleotide and 80% amino acid identities with any alphaflexi- and betaflexi-virus sequences available in GenBank, identifying three novel carlavirus and one potexvirus species in the Hibiscus rosa-sinensis plant. The detection of physalis vein necrosis nepovirus and passion fruit green spot cilevirus in hibiscus are also new reports from Colombia. Overall, the meta-transcriptome analysis identified the complex virome associated with the black spot symptoms on hibiscus leaves and demonstrated the diversity of virus genera tolerated in the mixed infection of a single H. rosa-sinensis plant.


Assuntos
Coinfecção , Hibiscus , Vírus de RNA , Hibiscus/genética , Colômbia , Vírus de RNA/genética , Perfilação da Expressão Gênica
2.
Plant Dis ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471457

RESUMO

Passiflora edulis, commonly known as passion fruit, is a vine species of passionflower native to South America. In Colombia, yellow passion fruit (P. edulis f. flavicarpa) is the most important species in terms of net production and local consumption. Recently two brevipalpus transmitted cileviruses, (i) passion fruit green spot virus (PfGSV) and (ii) hibiscus strain of citrus leprosis virus C2 (CiLV-C2H) were detected in passion fruit in Brazil and Hawaii, respectively (Ramos-González et al., 2020, Olmedo-Velarde et al., 2022). CiLV-C2H infects both citrus and hibiscus in Colombia (Roy et al., 2015, 2018) but there was no report of PfGSV elsewhere apart from Brazil and Paraguay (Costa-Rodrigues et al., 2022). Apart from emerging begomovirus diseases, five major viruses are known to infect passion fruit in Colombia: soybean mosaic virus (SMV), cowpea aphid-borne mosaic virus, passion fruit yellow mosaic virus, cucumber mosaic virus, and a tentative Gulupa bacilliform badnavirus A (Cardona et al., 2022). Current findings of CiLV-C2H in passion fruit and PfGSV in hibiscus motivated us to investigate the possibilities of cilevirus infection in passion fruit in Colombia. During surveys, along with healthy yellow passion fruit leaves, five symptomatic plant samples from Meta and three from Casanare were collected before sent to the Molecular Plant Pathology Laboratory at Beltsville, MD under APHIS permit. Passion fruit samples from Meta showed leaf mottling, rugose mosaic, and leaf distortion, whereas leaf variegation, chlorotic spots, yellowing, green spots in senescent leaves and green vein banding were observed in the Casanare samples (Supp. Fig. 1). Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen, USA). To know the potential cilevirus infection in these samples, three PfGSV specific (Ramos-González et al. 2020) and a CiLV-C2 generic primer pairs (Olmedo-Velarde et al. 2021) were used in the RT-PCR assays. All five passion fruit samples from Meta failed to produce either CiLV-C2 or CiLV-C2H or PfGSV amplicon whereas all three Casanare samples successfully amplified 321, 244 and 299 nts of PfGSV-RNA1 and -RNA2 amplicons using C13F/C13R, C6F/C6R and C8F/C8R primers, respectively. Bi-directional amplicon sequencing followed by BlastN analysis revealed ≥99% nt identity with the PfGSV-RNA1 (MK804173) and -RNA2 (MK804174) genome sequences. An optimized ribo-depleted library preparation protocol was utilized to prepare two cDNA libraries using the RNA extracts of a PfGSV suspected positive (Casanare) and a negative (Meta) samples (Chellappan et al., 2022). HTS libraries of Casanare and Meta samples resulted in 22.7 to 29.5 million raw reads, respectively. After adapter trimming and filtering, clean reads were mapped to the Arabidopsis thaliana reference genome and unmapped reads were de novo assembled (Chellappan et al., 2022). BlastN analysis from the assembled contigs identified 1-3 contigs corresponding to PfGSV-RNA1 and -RNA2, respectively, from Casanare sample whereas 3 contigs of SMV were identified in Meta passion fruit sample. No other virus sequence was obtained from either of the libraries. Assembled contigs covered 99.33% of the RNA1 and 94.42% of the RNA2 genome, with read depths of 64,474 and 119,549, respectively. Meta sample contigs (OP564897) covered >99% of the SMV genome, which shared >99% nt identity with the Colombian SMV isolates (KY249378, MW655827). Both RNA-1 (OP564895) and -2 (OP564896) segments of the Casanare isolate shared 99% nt identity with PfGSV isolate (MK804173-74). Our discovery identified PfGSV in Colombia, for the first-time outside Brazil and Paraguay. The findings of PfGSV in yellow passion fruit increases the potential threat and possibility of PfGSV movement via Brevipalpus sp. from passion fruit to other hosts.

4.
Viruses ; 13(12)2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960766

RESUMO

Previous results using a movement defective alfalfa mosaic virus (AMV) vector revealed that citrus leprosis virus C (CiLV-C) movement protein (MP) generates a more efficient local movement, but not more systemic transport, than citrus leprosis virus C2 (CiLV-C2) MP, MPs belonging to two important viruses for the citrus industry. Here, competition experiment assays in transgenic tobacco plants (P12) between transcripts of AMV constructs expressing the cilevirus MPs, followed by several biological passages, showed the prevalence of the AMV construct carrying the CiLV-C2 MP. The analysis of AMV RNA 3 progeny recovered from P12 plant at the second viral passage revealed the presence of a mix of progeny encompassing the CiLV-C2 MP wild type (MPWT) and two variants carrying serines instead phenylalanines at positions 72 (MPS72F) or 259 (MPS259F), respectively. We evaluated the effects of each modified residue in virus replication, and cell-to-cell and long-distance movements. Results indicated that phenylalanine at position 259 favors viral cell-to-cell transport with an improvement in viral fitness, but has no effect on viral replication, whereas mutation at position 72 (MPS72F) has a penalty in the viral fitness. Our findings indicate that the prevalence of a viral population may be correlated with its greater efficiency in cell-to-cell and systemic movements.


Assuntos
Citrus/virologia , Mutação , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/fisiologia , Vírus do Mosaico da Alfafa/genética , Movimento , Plantas Geneticamente Modificadas , Replicação Viral
5.
Front Microbiol ; 12: 641252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995302

RESUMO

Despite the importance of viral strains/variants as agents of emerging diseases, genetic and evolutionary processes affecting their ecology are not fully understood. To get insight into this topic, we assessed the population and spatial dynamic parameters of citrus leprosis virus C (CiLV-C, genus Cilevirus, family Kitaviridae). CiLV-C is the etiological agent of citrus leprosis disease, a non-systemic infection considered the main viral disorder affecting citrus orchards in Brazil. Overall, we obtained 18 complete or near-complete viral genomes, 123 complete nucleotide sequences of the open reading frame (ORF) encoding the putative coat protein, and 204 partial nucleotide sequences of the ORF encoding the movement protein, from 430 infected Citrus spp. samples collected between 1932 and 2020. A thorough examination of the collected dataset suggested that the CiLV-C population consists of the major lineages CRD and SJP, unevenly distributed, plus a third one called ASU identified in this work, which is represented by a single isolate found in an herbarium sample collected in Asuncion, Paraguay, in 1937. Viruses from the three lineages share about 85% nucleotide sequence identity and show signs of inter-clade recombination events. Members of the lineage CRD were identified both in commercial and non-commercial citrus orchards. However, those of the lineages SJP were exclusively detected in samples collected in the citrus belt of São Paulo and Minas Gerais, the leading Brazilian citrus production region, after 2015. The most recent common ancestor of viruses of the three lineages dates back to, at least, ∼1500 years ago. Since citrus plants were introduced in the Americas by the Portuguese around the 1520s, the Bayesian phylodynamic analysis suggested that the ancestors of the main CiLV-C lineages likely originated in contact with native vegetation of South America. The intensive expansion of CRD and SJP lineages in Brazil started probably linked to the beginning of the local citrus industry. The high prevalence of CiLV-C in the citrus belt of Brazil likely ensues from the intensive connectivity between orchards, which represents a potential risk toward pathogen saturation across the region.

6.
Microorganisms ; 9(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671330

RESUMO

Although citrus leprosis disease has been known for more than a hundred years, one of its causal agents, citrus leprosis virus C2 (CiLV-C2), is poorly characterized. This study described the association of CiLV-C2 movement protein (MP) and capsid protein (p29) with biological membranes. Our findings obtained by computer predictions, chemical treatments after membrane fractionation, and biomolecular fluorescence complementation assays revealed that p29 is peripherally associated, while the MP is integrally bound to the cell membranes. Topological analyses revealed that both the p29 and MP expose their N- and C-termini to the cell cytoplasmic compartment. The implications of these results in the intracellular movement of the virus were discussed.

7.
Front Plant Sci ; 11: 1188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849736

RESUMO

Citrus leprosis virus C (CiLV-C, genus Cilevirus, family Kitaviridae) is an atypical virus that does not spread systemically in its plant hosts. Upon its inoculation by Brevipalpus mites, only localized lesions occur, and the infection remains limited to cells around mite feeding sites. Here, we aimed to gain insights into the putative causes of viral unfitness in plants by expanding the limited knowledge of the molecular mechanisms underlying plant/kitavirid interactions. Firstly, we quantified the CiLV-C viral RNAs during the infection in Arabidopsis thaliana plants using RT-qPCR and systematized it by defining three stages of distinguishing subgenomic and genomic RNA accumulation: i) 0-24 h after infestation, ii) 2-4 days after infestation (dai), and iii) 6-10 dai. Accordingly, the global plant response to CiLV-C infection was assessed by RNA-Seq at each period. Results indicated a progressive reprogramming of the plant transcriptome in parallel to the increasing viral loads. Gene ontology enrichment analysis revealed the induction of cell growth-related processes at the early stages of the infection and the triggering of the SA-mediated pathway, ROS burst and hypersensitive response (HR) at the presymptomatic stage. Conversely, infected plants downregulated JA/ET-mediated pathways and processes involved in the primary metabolism including photosynthesis. Marker genes of unfolded protein response were also induced, suggesting a contribution of the endoplasmic reticulum stress to the cell death caused by the viral infection. Finally, we transiently expressed CiLV-C proteins in Nicotiana benthamiana plants to undertake their roles in the elicited plant responses. Expression of the CiLV-C P61 protein consistently triggered ROS burst, upregulated SA- and HR-related genes, increased SA levels, reduced JA levels, and caused cell death. Mimicry of responses typically observed during CiLV-C-plant interaction indicates P61 as a putative viral effector causing the HR-like symptoms associated with the infection. Our data strengthen the hypothesis that symptoms of CiLV-C infection might be the outcome of a hypersensitive-like response during an incompatible interaction. Consequently, the locally restricted infection of CiLV-C, commonly observed across infections by kitavirids, supports the thesis that these viruses, likely arising from an ancestral arthropod-infecting virus, are unable to fully circumvent plant defenses.

8.
Front Plant Sci ; 9: 1299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254655

RESUMO

Citrus leprosis (CL) is a re-emergent viral disease affecting citrus crops in the Americas, and citrus leprosis virus C (CiLV-C), belonging to the genus Cilevirus, is the main pathogen responsible for the disease. Despite the economic importance of CL to the citrus industry, very little is known about the performance of viral proteins. Here, we present a robust in vivo study around functionality of p29, p15, p61, MP, and p24 CiLV-C proteins in the host cells. The intracellular sub-localization of all those viral proteins in plant cells are shown, and their co-localization with the endoplasmic reticulum (ER), Golgi complex (GC) (p15, MP, p61 and p24), actin filaments (p29, p15 and p24), nucleus (p15), and plasmodesmata (MP) are described. Several features are disclosed, including i) ER remodeling and redistribution of GC apparatus, ii) trafficking of the p29 and MP along the ER network system, iii) self-interaction of the p29, p15, and p24 and hetero-association between p29-p15, p29-MP, p29-p24, and p15-MP proteins in vivo. We also showed that all proteins are associated with biological membranes; whilst p15 is peripherally associated, p29, p24, and MP are integrally bound to cell membranes. Furthermore, while p24 exposes an N-cytoplasm-C-lumen topology, p29, and p15 are oriented toward the cytoplasmic face of the biological membrane. Based on our findings, we discuss the possible performance of each protein in the context of infection and a hypothetical model encompassing the virus spread and sites for replication and particle assembly is suggested.

9.
Sci. agric ; 74(1): 85-89, 2017. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1497612

RESUMO

Brevipalpus-transmitted viruses (BTV) are a taxonomically diverse group of plant viruses which severely affect a number of major crops. Members of the group can be sub-classified into cytoplasmic (BTV-C) or nuclear type (BTV-N) according to the accumulation sites of virions in the infected plant cells. Both types of BTV produce only local infections near the point of inoculation by viruliferous mites. Features of BTV-plant interactions such as the failure of systemic spread in their natural hosts are poorly understood. In this study we evaluated Arabidopsis thaliana, a model plant commonly used for the study of plant-virus interactions, as an alternative host for BTV. Infection of Arabidopsis with the BTV-N Coffee ringspot virus and Clerodendrum chlorotic spot virus, and the BTV-C Solanum violaefolium ringspot virus, were mediated by viruliferous Brevipalpus mites collected in the wild. Upon infestation, local lesions appeared in 7 to 10 days on leaves of, at least, 80 % of the assayed plants. Presence of viral particles and characteristic cytopathic effects were detected by transmission electron microscopy (TEM) and the viral identities confirmed by specific reverse-transcriptase polymerase chain reaction (RT-PCR) and further amplicon sequencing. The high infection rate and reproducibility of symptoms of the three different viruses assayed validate A. thaliana as a feasible alternative experimental host for BTV.


Assuntos
Arabidopsis , Interações Hospedeiro-Patógeno , Vetores Aracnídeos , Vírus de Plantas , Ácaros/virologia , Efeito Citopatogênico Viral , Noxas , Vetores de Doenças
10.
Sci. agric. ; 74(1): 85-89, 2017. ilus, tab
Artigo em Inglês | VETINDEX | ID: vti-684140

RESUMO

Brevipalpus-transmitted viruses (BTV) are a taxonomically diverse group of plant viruses which severely affect a number of major crops. Members of the group can be sub-classified into cytoplasmic (BTV-C) or nuclear type (BTV-N) according to the accumulation sites of virions in the infected plant cells. Both types of BTV produce only local infections near the point of inoculation by viruliferous mites. Features of BTV-plant interactions such as the failure of systemic spread in their natural hosts are poorly understood. In this study we evaluated Arabidopsis thaliana, a model plant commonly used for the study of plant-virus interactions, as an alternative host for BTV. Infection of Arabidopsis with the BTV-N Coffee ringspot virus and Clerodendrum chlorotic spot virus, and the BTV-C Solanum violaefolium ringspot virus, were mediated by viruliferous Brevipalpus mites collected in the wild. Upon infestation, local lesions appeared in 7 to 10 days on leaves of, at least, 80 % of the assayed plants. Presence of viral particles and characteristic cytopathic effects were detected by transmission electron microscopy (TEM) and the viral identities confirmed by specific reverse-transcriptase polymerase chain reaction (RT-PCR) and further amplicon sequencing. The high infection rate and reproducibility of symptoms of the three different viruses assayed validate A. thaliana as a feasible alternative experimental host for BTV.(AU)


Assuntos
Interações Hospedeiro-Patógeno , Vetores Aracnídeos , Vírus de Plantas , Arabidopsis , Ácaros/virologia , Efeito Citopatogênico Viral , Vetores de Doenças , Noxas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA