Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Front Pediatr ; 12: 1424380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114852

RESUMO

The complement system, a vital component of innate immunity, consists of various proteins and pathways crucial for the recognition and elimination of pathogens. In addition, it plays a major role in the initiation of adaptive response through the opsonization of antigens, contributing to B-cell activation and memory maintenance. Deficiencies in complement proteins, particularly C3, can lead to severe and recurrent infections as well as immune complex disorders. Here, we present a case report of two siblings with total C3 deficiency resulting from compound heterozygous mutations in C3 (NM_000064.4): c.305dup; [p.Asn103GlnfsTer66] and c.1269 + 5G>T, previously unreported in C3-related diseases. Both, the index case and her sister, presented a history of recurrent infections since early childhood and one of them developed hemolytic uremic syndrome (HUS). Immunological evaluation revealed absent plasma C3 levels, decreased memory B cells, hypogammaglobulinemia, and impaired response to polysaccharide antigens. The siblings showed partial responses to antimicrobial prophylaxis and vaccination, requiring intravenous immunoglobulin replacement therapy, resulting in clinical improvement. Genetic analysis identified additional risk polymorphisms associated with atypical HUS. This case highlights the importance of comprehensive genetic and immunological evaluations in complement deficiencies, along with the potential role of immunoglobulin replacement therapy in managing associated antibody defects.

2.
Am J Reprod Immunol ; 92(2): e13915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132825

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to the global COVID-19 pandemic, significantly impacting the health of pregnant women. Obstetric populations, already vulnerable, face increased morbidity and mortality related to COVID-19, aggravated by preexisting comorbidities. Recent studies have shed light on the potential correlation between COVID-19 and preeclampsia (PE), a leading cause of maternal and perinatal morbidity worldwide, emphasizing the significance of exploring the relationship between these two conditions. Here, we review the pathophysiological similarities that PE shares with COVID-19, with a particular focus on severe COVID-19 cases and in PE-like syndrome cases related with SARS-CoV-2 infection. We highlight cellular and molecular mechanistic inter-connectivity between these two conditions, for example, regulation of renin-angiotensin system, tight junction and barrier integrity, and the complement system. Finally, we discuss how COVID-19 pandemic dynamics, including the emergence of variants and vaccination efforts, has shaped the clinical scenario and influenced the severity and management of both COVID-19 and PE. Continued research on the mechanisms of SARS-CoV-2 infection during pregnancy and the potential risk of developing PE from previous infections is warranted to delineate the complexities of COVID-19 and PE interactions and to improve clinical management of both conditions.


Assuntos
COVID-19 , Pré-Eclâmpsia , Complicações Infecciosas na Gravidez , SARS-CoV-2 , Humanos , COVID-19/fisiopatologia , COVID-19/imunologia , Gravidez , Feminino , Pré-Eclâmpsia/fisiopatologia , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/imunologia , SARS-CoV-2/fisiologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/virologia , Sistema Renina-Angiotensina
3.
Immunol Invest ; 53(5): 752-765, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634569

RESUMO

BACKGROUND: The process of tissue injury in coronary artery disease (CAD) has been associated with activation of the complement system, partly due to the action of mannose-binding lectin (MBL) and C3, which are expressed in atherosclerotic lesions. OBJECTIVE: The aim of this study was to evaluate the serum levels of MBL and C3 in patients with CAD and to compare them with healthy controls. Additionally, we aim to assess the correlation between MBL and C3 levels and cardiometabolic parameters. METHODS: MBL and C3 serum concentration were determined by ELISA and immunoturbidimetry, respectively, in up to 119 patients undergoing coronary angiography for CAD evaluation, comprising 48 individuals diagnosed with acute myocardial infarction (MI) and 71 without MI. A total of 93 paired healthy controls were included in the study. RESULTS: Individuals with CAD had MBL serum concentration higher than controls (p = .002), regardless of the presence of MI (p = .006). In addition, high concentration of MBL (>2000 ng/mL) was more frequent in patients with CAD (p = .007; OR = 2.6; 95% CI = 1.3-5.1). C3 levels were not significantly associated with any of the patient groups but were positively correlated with cardiometabolic parameters such as body mass index (BMI) and triglycerides levels. CONCLUSIONS: Higher concentrations of MBL were found to be associated with CAD, whereas C3 levels were found to be associated with cardiovascular risk factors.


Assuntos
Complemento C3 , Doença da Artéria Coronariana , Lectina de Ligação a Manose , Humanos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/diagnóstico , Lectina de Ligação a Manose/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Complemento C3/metabolismo , Complemento C3/análise , Idoso , Angiografia Coronária , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Biomarcadores/sangue , Índice de Massa Corporal , Estudos de Casos e Controles
4.
Artigo em Inglês | MEDLINE | ID: mdl-38687951

RESUMO

OBJECTIVE: The present study has the following objectives: 1) identify differentially expressed proteins and pathways in blood samples of BD compared to healthy controls by employing high-throughput proteomics and bioinformatics and 2) characterize disease-related molecular signatures through in-depth analysis of the differentially expressed proteins and pathways. METHODS: Blood samples from BD patients (n=10) classified into high (BD+) or poor functioning (BD-), based on functional and cognitive status, and healthy controls (n=5) were analyzed using mass spectrometry-based proteomic analysis. Bioinformatics was performed to detect biological processes, pathways, and diseases related to BD. RESULTS: Eight proteins exclusively characterized the molecular profile of patients with BD+ compared to HC, while 26 altered proteins were observed in the BD- group. These altered proteins were mainly enriched in biological processes related to lipid metabolism, complement system and coagulation cascade, and cardiovascular diseases; all these changes were more prominent in the BD- group. CONCLUSION: These findings may represent systemic alterations that occur with the progression of the illness and a possible link between BD and medical comorbidities. Such comprehensive understanding provides valuable insights for targeted interventions, addressing mental and physical health aspects in subjects with BD. Despite these promising findings, further research is warranted, encompassing larger sample cohorts and incorporating biological validation through molecular biology methods.

5.
Ann Diagn Pathol ; 70: 152292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484478

RESUMO

Minimal Change Disease (MCD) and Focal Segmental Glomerulosclerosis (FSGS) are the main causes of nephrotic syndrome in the world. The complement system appears to play an important role in the pathogenesis of these diseases. To evaluate the deposition of immunoglobulins and particles of the complement system in renal biopsies of patients with FSGS and MCD and relate to laboratory data, we selected 59 renal biopsies from patients with podocytopathies, 31 from patients with FSGS and 28 with MCD. Epidemiological, clinical, laboratory information and the prognosis of these patients were evaluated. Analysis of the deposition of IgM, IgG, C3, C1q and C4d in renal biopsies was performed. We related IgM and C3 deposition with laboratory parameters. Statistical analysis was performed using GraphPad Prism version 7.0. Glomerular deposition of IgM was significantly higher in the FSGS group, as was codeposition of IgM and C3. The clinical course of patients and laboratory data were also worse in cases of FSGS, with a higher percentage progressing to chronic kidney disease and death. Patients with C3 deposition had significantly higher mean serum creatinine and significantly lower eGFR, regardless of disease. Patients with FSGS had more IgM and C3 deposition in renal biopsies, worse laboratory data and prognosis than patients with MCD. C3 deposition, both in FSGS and MCD, appears to be related to worsening renal function.


Assuntos
Complemento C3 , Glomerulosclerose Segmentar e Focal , Imunoglobulina M , Glomérulos Renais , Nefrose Lipoide , Humanos , Imunoglobulina M/metabolismo , Complemento C3/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/imunologia , Feminino , Masculino , Adulto , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo , Pessoa de Meia-Idade , Nefrose Lipoide/patologia , Nefrose Lipoide/metabolismo , Podócitos/patologia , Podócitos/metabolismo , Adulto Jovem , Adolescente , Prognóstico , Biópsia , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Síndrome Nefrótica/imunologia , Idoso
6.
Data Brief ; 53: 110217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445196

RESUMO

The targeted LC-MS/MS method has been widely applied for peptide quantification, offering sensibility, specificity, and reproducibility to the analysis. However, it requires the prior selection of targets, including the construction of a spectral library. Here, we present a dataset comprising peptide mass spectra for targeted LC-MS/MS method setup, applied to a set of human complement system proteins. Additionally, we selected a group of peptides and demonstrated their stability and reproducibility in quantification. This dataset is invaluable for studies aiming at the quantification of the complement system proteins by targeted LC-MS/MS, as it provides data for spectral library construction and a list of selected peptides.

7.
Arch Toxicol ; 98(5): 1561-1572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498159

RESUMO

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.


Assuntos
Esfingomielina Fosfodiesterase , Picada de Aranha , Venenos de Aranha , Humanos , Esfingomielina Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/toxicidade , Rim , Morte Celular
8.
Front Cell Infect Microbiol ; 14: 1327241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371299

RESUMO

Plasmid-encoded toxin (Pet) is an autotransporter protein of the serine protease autotransporters of Enterobacteriaceae (SPATE) family, important in the pathogenicity of Escherichia coli. The pet gene was initially found in the enteroaggregative E. coli (EAEC) virulence plasmid, pAA2. Although this virulence factor was initially described in EAEC, an intestinal E. coli pathotype, pet may also be present in other pathotypes, including extraintestinal pathogenic strains (ExPEC). The complement system is an important defense mechanism of the immune system that can be activated by invading pathogens. Proteases produced by pathogenic bacteria, such as SPATEs, have proteolytic activity and can cleave components of the complement system, promoting bacterial resistance to human serum. Considering these factors, the proteolytic activity of Pet and its role in evading the complement system were investigated. Proteolytic assays were performed by incubating purified components of the complement system with Pet and Pet S260I (a catalytic site mutant) proteins. Pet, but not Pet S260I, could cleave C3, C5 and C9 components, and also inhibited the natural formation of C9 polymers. Furthermore, a dose-dependent inhibition of ZnCl2-induced C9 polymerization in vitro was observed. E. coli DH5α survived incubation with human serum pre-treated with Pet. Therefore, Pet can potentially interfere with the alternative and the terminal pathways of the complement system. In addition, by cleaving C9, Pet may inhibit membrane attack complex (MAC) formation on the bacterial outer membrane. Thus, our data are suggestive of a role of Pet in resistance of E. coli to human serum.


Assuntos
Toxinas Bacterianas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas do Sistema Complemento/metabolismo , Serina Proteases/metabolismo , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética
9.
Heliyon ; 10(1): e23670, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187242

RESUMO

Mannose-binding lectin (MBL) binds to SARS-CoV-2, inhibits infection of susceptible cells, and activates the complement system via the lectin pathway. In this study, we investigated the association of MBL2 polymorphisms with the risk of hospitalization and clinical worsening in patients with COVID-19. A total of 550 patients with COVID-19 were included (94 non-hospitalized and 456 hospitalized). Polymorphisms in MBL2 exon 1 (codons 52, 54 and 57) and promoter region (-550, -221, and +4) were determined by real-time PCR. MBL and complement proteins were measured by Luminex. A higher frequency of the H/H genotype and the HYPA haplotype was observed in non-hospitalized patients when compared to hospitalized. In addition, critically ill patients carrying haplotypes associated with high MBL levels (HYPA/HYPA + HYPA/LYPA + HYPA/LYQA + LYPA/LYQA + LYPA/LYPA + LYQA/LYQA + LXPA/HYPA + LXPA/LYQA + LXPA/LYPA) were protected against lower oxygen saturation levels (P = 0.02), use of invasive ventilation use (P = 0.02, OR 0.38), and shock (P = 0.01, OR 0.40), independent of other potential confounders adjusted by multivariate analysis. Our results suggest that variants in MBL2 associated with high MBL levels may play a protective role in the clinical course of COVID-19.

10.
Crit Rev Microbiol ; 50(2): 138-167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36622855

RESUMO

In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.


Assuntos
Cárie Dentária , Microbiota , Humanos , Microbiota/fisiologia , Biofilmes , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA