Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202766

RESUMO

Green tomato (Physalis ixocarpa) is a specie native to Mexico, and it is known as "tomatillo" or "husk tomato". The fruit contains vitamins, minerals, phenolic compounds, and steroidal lactones, presenting antimicrobial activity and antinarcotic effects. Therefore, it is not only used in traditional Mexican cuisine, but also in traditional medicine to relieve some discomforts such as fever, cough, and amygdalitis. However, it is a perishable fruit whose shelf life is very short. As a part of the peel, cuticle, and epicuticular waxes represent the most important part in plant protection, and the specific composition and structural characterization are significant to know how this protective biopolymer keeps quality characteristics in fresh fruits. P. ixocarpa cutin was obtained by enzymatic treatments (cellulase, hemicellulose, and pectinase) and different concentrations of TFA, and studied through Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CPMAS 13C NMR), Ultra-High Performance Liquid Chromatography coupled to Mass Spectrometry (UHPLC-MS), and was morphologically characterized by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM). The main constituents identified under the basis of UHPLC-MS analysis were 9,10,18-trihydroxy-octadecanoic acid and 9,10-epoxy-18-hydroxy-octadecanoic acid with 44.7 and 37.5%, respectively. The C16 absence and low occurrence of phenolic compounds, besides the presence of glandular trichomes, which do not allow a continuous layer on the surface of the fruit, could be related to a lower shelf life compared with other common fruits such as tomato (Solanum lycopersicum).


Assuntos
Lipídeos de Membrana , Physalis , Solanum lycopersicum , Frutas , México , Fenóis
2.
Plants (Basel) ; 11(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35567134

RESUMO

Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been hypothesized that the cuticle plays a role in the development, ripening, quality, resistance to pathogen attack and postharvest shelf life of fleshy fruits. The cuticle's structure and composition change in response to the fruit's developmental stage, fruit physiology and different postharvest treatments. This review summarizes current information on the physiology and molecular mechanism of cuticle biosynthesis and composition changes during the development, ripening and postharvest stages of fleshy fruits. A discussion and analysis of studies regarding the relationship between cuticle composition, water loss reduction and maintaining fleshy fruits' postharvest quality are presented. An overview of the molecular mechanism of cuticle biosynthesis and efforts to elucidate it in fleshy fruits is included. Enhancing our knowledge about cuticle biosynthesis mechanisms and identifying specific transcripts, proteins and lipids related to quality traits in fleshy fruits could contribute to the design of biotechnological strategies to improve the quality and postharvest shelf life of these important fruit crops.

3.
Molecules ; 25(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339233

RESUMO

The cuticle, a protective cuticular barrier present in almost all primary aerial plant organs, has a composition that varies between plant species. As a part of the apple peel, cuticle and epicuticular waxes have an important role in the skin appearance and quality characteristic in fresh fruits destined for human consumption. The specific composition and structural characteristics of cutin from two apple varieties, "golden delicious" and "red delicious", were obtained by enzymatic protocols and studied by means of cross polarization magic angle spinning nuclear magnetic resonance (CP-MAS 13C NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and mass spectrometry, and were morphologically characterized by specialized microscopy techniques (atomic force microscopy (AFM), confocal laser scanning microscopy (CLMS), and scanning electron microscopy (SEM)). According to CP-MAS 13C NMR and ATR-FTIR analysis, cutins from both varieties are mainly composed of aliphatics and a small difference is shown between them. This was corroborated from the hydrolyzed cutins analysis by mass spectrometry, where 9,10,18-trihydroxy-octadecanoic acid; 10,20-Dihydroxy-icosanoic acid; 10,16-dihydroxy hexadecenoic acid (10,16-DHPA); 9,10-epoxy-12-octadecenoic acid; and 9,10-epoxy-18-hydroxy-12-octadecenoic acid were the main monomers isolated. The low presence of polysaccharides and phenolics in the cutins obtained could be related to the low elastic behavior of this biocomposite and the presence of cracks in the apple cutin's surface. These cracks have an average depth of 1.57 µm ± 0.57 in the golden apple, and 1.77 µm ± 0.64 in those found in the red apple. The results obtained in this work may facilitate a better understanding that mechanical properties of the apple fruit skin are mainly related to the specific aliphatic composition of cutin and help to much better investigate the formation of microcracks, an important symptom of russet formation.


Assuntos
Malus/metabolismo , Lipídeos de Membrana/análise , Frutas/metabolismo , Hidrólise , Hidróxidos/química , Ácido Linoleico/análise , Ácido Linoleico/química , Lipídeos de Membrana/química , Microscopia de Força Atômica , Microscopia Confocal , Ácido Palmítico/análise , Ácido Palmítico/química , Compostos de Potássio/química , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Polymers (Basel) ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872115

RESUMO

Plant cuticles have attracted attention because they can be used to produce hydrophobic films as models for novel biopolymers. Usually, cuticles are obtained from agroresidual waste. To find new renewable natural sources to design green and commercially available bioplastics, fruits of S. aculeatissimum and S. myriacanthum were analyzed. These fruits are not used for human or animal consumption, mainly because the fruit is composed of seeds. Fruit peels were object of enzymatic and chemical methods to get thick cutins in good yields (approximately 77% from dry weight), and they were studied by solid-state resonance techniques (CPMAS 13C NMR), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and direct injection electrospray ionization mass spectrometry (DIESI-MS) analytical methods. The main component of S. aculeatissimum cutin is 10,16-dihydroxypalmitic acid (10,16-DHPA, 69.84%), while S. myriacanthum cutin besides of 10,16-DHPA (44.02%); another two C18 monomers: 9,10,18-trihydroxy-octadecanoic acid (24.03%) and 18-hydroxy-9S,10R-epoxy-octadecanoic acid (9.36%) are present. The hydrolyzed cutins were used to produce films demonstrating that both cutins could be a potential raw material for different biopolymers.

5.
Appl Microbiol Biotechnol ; 103(9): 3863-3874, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30863878

RESUMO

Four cutinase genes are encoded in the genome of the saprophytic fungus Aspergillus nidulans, but only two of them have proven to codify for active cutinases. However, their overall roles in cutin degradation are unknown, and there is scarce information on the regulatory effectors of their expression. In this work, the expression of the cutinase genes was assayed by multiplex qRT-PCR in cultures grown in media containing both inducer and repressor carbon sources. The genes ancut1 and ancut2 were induced by cutin and its monomers, while ancut3 was constitutively expressed. Besides, cutin induced ancut4 only under oxidative stress conditions. An in silico analysis of the upstream regulatory sequences suggested binding regions for the lipid metabolism transcription factors (TF) FarA for ancut1 and ancut2 while FarB for ancut3. For ancut4, the analysis suggested binding to NapA (the stress response TF). These binding possibilities were experimentally tested by transcriptional analysis using the A. nidulans mutants ANΔfarA, ANΔfarB, and ANΔnapA. Regarding cutin degradation, spectroscopic and chromatographic methods showed similar products from ANCUT1 and ANCUT3. In addition, ANCUT1 produced 9,10-dihydroxy hexadecanoic acid, suggesting an endo-cleavage action of this enzyme. Regarding ANCUT2 and ANCUT4, they produced omega fatty acids. Our results confirmed the cutinolytic activity of the four cutinases, allowed identification of their specific roles in the cutinolytic system and highlighted their differences in the regulatory mechanisms and affinity towards natural substrates. This information is expected to impact the cutinase production processes and broaden their current biotechnological applications.


Assuntos
Aspergillus nidulans/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Lipídeos de Membrana/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Hidrolases de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Phytochemistry ; 144: 78-86, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28898741

RESUMO

Grapefruit and lime cutins were analyzed and compared in order to obtain information about their cutin architecture. This was performed using a sequential hydrolysis, first with trifluoroacetic acid to remove most of the polysaccharides present in the cutins, followed by an alkaline hydrolysis in order to obtain the main aliphatic compounds. Analysis by CPMAS 13C NMR and ATR FT-IR of the cutins after 2.0 M TFA revealed that grapefruit cutin has independent aliphatic and polysaccharide domains while in the lime cutin these components could be homogeneously distributed. These observations were in agreement with an AFM analysis of the cutins obtained in the hydrolysis reactions. The main aliphatic compounds were detected and characterized as 16-hydroxy-10-oxo-hexadecanoic acid and 10,16-dihydroxyhexadecanoic acid. These were present in grapefruit cutin at 35.80% and 21.86% and in lime cutin at 20.44% and 40.36% respectively.


Assuntos
Compostos de Cálcio/química , Citrus paradisi/química , Lipídeos de Membrana/isolamento & purificação , Óxidos/química , Ácido Trifluoracético/química , Hidrólise , Lipídeos de Membrana/química
7.
Pharmacogn Mag ; 11(43): 470-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26246721

RESUMO

BACKGROUND: Triterpenes as betulinic (BA), oleanolic (OA) and ursolic acids (UA) have increasingly gained therapeutic relevance due to their wide scope of pharmacological activities. To fit large-scale demands, exploitable sources of these compounds have to be found and simple, cost-effective methods to extract them developed. Leaf material represents the best plant sustainable raw material. To obtain triterpene acid-rich extracts from leaves of Eugenia, Psidium and Syzygium species (Myrtaceae) by directly treating the dry plant material with alkalinized hydrated ethanol. This procedure was adapted from earlier methods to effect depolymerization of the leaf cutin. MATERIALS AND METHODS: Extracts were prepared by shaking the milled dry leaves in freshly prepared 2% NaOH in 95% EtOH solution (1:4 w/v) at room temperature for 6 h. Working up the product in acidic aqueous medium led to clear precipitates in which BA, OA and UA were quantified by gas chromatography. RESULTS: Pigment-free and low-polyphenol content extracts (1.2-2.8%) containing 6-50% of total triterpene acids were obtained for the six species assayed. UA (7-20%) predominated in most extracts, but BA preponderated in Eugenia florida (39%). Carried out in parallel, n-hexane defatted leaves led to up to 9% enhancement of total acids in the extracts. The hydroalcoholate treatment of Myrtaceae species dry leaves proved to be a cost-effective and environmentally friendly method to obtain triterpene acids, providing them be resistant to alkaline medium. These combined techniques might be applicable to other plant species and tissues.

8.
Rev. biol. trop ; 62(1): 282-307, ene.-mar. 2014. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-715430

RESUMO

Studies on reproductive aspects of Lycopodiaceae are not very abundant in the scientific literature, and constitute essential information to support taxonomic and systematic relationships among the group. Here we present a detailed study of the ontogeny of sporangia and sporogenesis, and the chemical determination of several compounds generated during spore formation. The analyses were performed in 14 taxa of six genera of the family, Diphasiastrum, Diphasium, Huperzia (a genus which is treated here including Phlegmariurus), Lycopodiella, Lycopodium and Palhinhaea. Specimens were collected in three departments from the Colombian Andes between 1 454-3 677m altitude. Ontogeny was studied in small, 1cm long pieces of strobili and axis, which were fixed in glutaraldehyde or FAA, dehydrated in alcohol, embedded in LR White, sectioned in 0.2-0.5μm and stained with toluidine blue (TBO), a metachromatic dye that allows to detect both sporopollenin and lignin or its precursors, during these processes. For other studies, paraplast plus-embedded sections (3-5μm) were stained with safranin-fast green and alcian blue-hematoxylin. Chemical tests were also conducted in sections of fresh sporangia at different stages of maturity using alcian blue (mucopolysaccharides), Lugol solution (starch), Sudan III (lipids), phloroglucinol (lignin) and orcein (chromosomes). Sections were observed with photonic microscope equipped with differential interference contrast (DIC) and fluorescence microscopy (for spore and sporangium walls unstained). Strobili and sporangia were dehydrated with 2.2 dimethoxypropane, critical point dried and coated with gold for scanning electron microscopy (SEM). Our results indicated that the ontogeny of sporangia and sporogenesis were very similar to the previously observed in Huperzia brevifolia. Cutinisation occurs in early stages of development of sporangium cell walls, but in their final stages walls become lignified. As for the sporoderm development, the exospore is the first layer formed, composed by sporopollenin. The endospore deposits as a thin inner layer composed of cellulose, pectin and carboxylated polysaccharides. The perispore, if present, deposits at last. Mucopolysaccharides were found on the sporocyte coat and its abundance in sporangial cavity persists up to the immature tetrads stage, and then disappears. The lipids were abundant in the sporocytes, tetrads and spores, representing the main source of energy of the latter. In contrast, starch is not detected in the spores, but is abundant in premeiotic sporocytes and immature tetrads, developmental stages of high cellular metabolic activity. Intrinsic fluorescence corroborates the presence of lignin and cutin in the sporangium wall, while the sporopollenin is restricted to the exospore. The transfusion cells and the perispore are not always present. However, the processes of ontogeny and sporogenesis are extremely similar throughout the taxa studied, suggesting that they represent conservative family traits, nonspecific or generic.


Los estudios sobre aspectos reproductivos no son muy abundantes en la literatura científica sobre los taxones de Lycopodiaceae y constituyen información esencial para apoyar la taxonomía y relaciones sistemáticas en el grupo. Por lo tanto, se presenta aquí un análisis detallado de la ontogenia de los esporangios y esporogénesis, así como determinaciones químicas de varios compuestos generados durante la formación de las esporas. Los análisis se llevaron a cabo en 14 taxones de seis géneros de la familia: Diphasiastrum, Diphasium, Huperzia (un género que se trata aquí, incluyendo Phlegmariurus), Lycopodiella, Lycopodium y Palhinhaea. Las muestras fueron recolectadas en tres departamentos de los Andes de Colombia entre 1 454-3 677m de altitud. La ontogenia se estudió en trozos de estróbilos y ejes, de 1cm de largo, que se fijaron en glutaraldehido o FAA, se deshidrataron en alcohol, se incluyeron en LR White, se seccionaron en cortes de 0.2-0.5μm y se colorearon con azul de toluidina (TBO), un colorante metacromático que permite detectar tanto esporopolenina como lignina o sus precursores. Para estudios adicionales, secciones de 3-5μm de material incluido en paraplast plus se colorearon con safranina-verde rápido y azul alciánhematoxilina. Las pruebas químicas se llevaron a cabo en secciones de esporangios sin fijar en diferentes etapas de madurez utilizando azul alcián (mucopolisacáridos), solución de Lugol (almidón), Sudán III (lípidos), fluoroglucinol (lignina) y orceína (cromosomas). Las observaciones se efectuaron con microscopio fotónico equipado con contraste diferencial de interferencia (DIC) y microscopía de fluorescencia (para esporas y pared de los esporangios sin colorear). Para observaciones con microscopía electrónica de barrido (MEB), los estróbilos y esporangios se deshidrataron con 2,2 dimetoxipropano, se desecaron a punto crítico y se metalizaron con oro. Los resultados indican que la ontogenia de los esporangios y esporogénesis es muy similar a la observada previamente en Huperzia brevifolia. En las primeras etapas de desarrollo, las paredes celulares de la epidermis del esporangio se cutinizan y en las finales se lignifican. En el desarrollo del esporodermo, la primera capa que se forma es el exosporio, compuesto por esporopolenina. El endosporio es una capa interna delgada compuesta de celulosa, pectina y polisacáridos carboxilados. El perisporio, si está presente, es la última capa que se deposita. Los mucopolisacáridos se encontraron en la cubierta del esporocito, son abundantes en la cavidad esporangial hasta la etapa de tétradas inmaduras y luego desaparecen. Los lípidos son abundantes en esporocitos, tétradas y esporas, y representan la principal fuente de energía de estas. En contraste, el almidón no se detecta en las esporas pero es abundante en esporocitos premeióticos y tétradas inmaduras, ambos con gran actividad metabólica. La fluorescencia intrínseca corrobora la presencia de lignina y cutina en la pared del esporangio, mientras que la esporopolenina se limita al exosporio. Las células de transfusión y el perisporio no siempre están presentes. Sin embargo, los procesos de la ontogenia y esporogénesis son extremadamente similares en todos los taxones estudiados, lo que sugiere que representan rasgos típicos de familia, no específicos ni genéricos.


Assuntos
Lycopodiaceae/crescimento & desenvolvimento , Esporângios/crescimento & desenvolvimento , Esporos/crescimento & desenvolvimento , Histocitoquímica , Lycopodiaceae/química , Lycopodiaceae/classificação , Lycopodiaceae/citologia , Meiose , Microscopia de Fluorescência , Esporângios/química , Esporângios/classificação , Esporângios/citologia , Esporos/química , Esporos/classificação , Esporos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA