Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ciênc. rural (Online) ; 54(3): e20220375, 2024. tab
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1513993

RESUMO

ABSTRACT: The present study evaluated the efficiency of a protocol for micropropagation of stem apexes and nodal segments of basil 'Grecco a Palla' in various concentrations of 6-benzylaminopurine (BAP) and 3-indole butyric acid (IBA). A completely randomized design was used with six treatments distributed in five replications. A medium without growth regulators favored the survival of Ocimumbasilicum stem apexes inoculated in vitro, and thereby promoted the sprouting of explants, whereas, for nodal segments, it was necessary to use regulators, and the concentration of 0.5 mg.L−1 BAP 0.0 mg.L−1 of IBA was more beneficial for the species.


RESUMO: O objetivo deste trabalho foi avaliar a eficiência de um protocolo de micropropagação de ápices caulinares e segmentos nodais da cultivar de manjericão (Ocimum basilicum L.) 'Grecco a palla' em diferentes concentrações de BAP (6-benzilaminopurina) e de AIB (ácido 3-indol butírico). Foi utilizado delineamento experimental inteiramente casualizado, com seis tratamentos distribuídos em cinco repetições. Para ápices caulinares, meio sem a adição de reguladores de crescimento favoreceu a sobrevivência de ápices caulinares de O. basilicum inoculados in vitro, promovendo a brotação dos explantes. Enquanto que para segmentos nodais houve necessidade do uso de reguladores, sendo que a concentração de 0,5 mg.L-1 de BAP e 0,0 mg.L-1 de AIB foi mais benéfica para a espécie.

2.
Plants (Basel) ; 12(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960026

RESUMO

Cytokinins play a relevant role in flower and fruit development and plant yield. Strawberry fruits have a high commercial value, although what is known as the "fruit" is not a "true" botanical fruit because it develops from a non-reproductive organ (receptacle) on which the true botanical fruits (achenes) are found. Given cytokinins' roles in botanical fruits, it is important to understand their participation in the development of a non-botanical or accessory "fruit". Therefore, in this work, the role of cytokinin in strawberry flowers and fruits was investigated by identifying and exploring the expression of homologous genes for different families that participate in the pathway, through publicly available genomic and expression data analyses. Next, trans-zeatin content in developing flowers and receptacles was determined. A high concentration was observed in flower buds and at anthesis and decreased as the fruit approached maturity. Moreover, the spatio-temporal expression pattern of selected CKX genes was evaluated and detected in receptacles at pre-anthesis stages. The results point to an important role and effect of cytokinins in flower and receptacle development, which is valuable both from a biological point of view and to improve yield and the quality of this fruit.

3.
J Exp Bot ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875460

RESUMO

Root hairs (RH) have become an important model system for studying plant growth and how plants modulate their growth in response to cell-intrinsic and environmental stimuli. Here, we will discuss recent advances in our understanding of the molecular mechanisms underlying the growth of Arabidopsis thaliana RH in the interface between responses to environmental cues (e.g. nutrients such as nitrates, phosphate and microorganism) and hormonal stimuli (e.g. auxin). RH growth is under the control of several transcription factors that are also under strong regulation at different levels. In this review we highlight recent new discoveries along these transcriptional pathways that may increase our capacity to enhance nutrient uptake by the roots in the context of abiotic stresses. We used text-mining capacities of the PlantConnectome database to generate the most updated view of RH growth in these complex biological contexts.

4.
New Phytol ; 238(5): 1924-1941, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36918499

RESUMO

An environmentally responsive root system is crucial for plant growth and crop yield, especially in suboptimal soil conditions. This responsiveness enables the plant to exploit regions of high nutrient density while simultaneously minimizing abiotic stress. Despite the vital importance of root systems in regulating plant growth, significant gaps of knowledge exist in the mechanisms that regulate their architecture. Auxin defines both the frequency of lateral root (LR) initiation and the rate of LR outgrowth. Here, we describe a search for proteins that regulate root system architecture (RSA) by interacting directly with a key auxin transporter, PIN1. The native separation of Arabidopsis plasma membrane protein complexes identified several PIN1 co-purifying proteins. Among them, AZG1 was subsequently confirmed as a PIN1 interactor. Here, we show that, in Arabidopsis, AZG1 is a cytokinin (CK) import protein that co-localizes with and stabilizes PIN1, linking auxin and CK transport streams. AZG1 expression in LR primordia is sensitive to NaCl, and the frequency of LRs is AZG1-dependent under salt stress. This report therefore identifies a potential point for auxin:cytokinin crosstalk, which shapes RSA in response to NaCl.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Proteínas de Membrana Transportadoras , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Cloreto de Sódio
5.
Plants (Basel) ; 12(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771689

RESUMO

Phytohormones are regulators of plant growth and development, which under different types of stress can play a fundamental role in a plant's adaptation and survival. Some of these phytohormones such as cytokinin, gibberellin, salicylic acid, auxin, and ethylene are also produced by plant growth-promoting bacteria (PGPB). In addition, numerous volatile organic compounds are released by PGPB and, like bacterial phytohormones, modulate plant physiology and genetics. In the present work we review the basic functions of these bacterial phytohormones during their interaction with different plant species. Moreover, we discuss the most recent advances of the beneficial effects on plant growth of the phytohormones produced by PGPB. Finally, we review some aspects of the cross-link between phytohormone production and other plant growth promotion (PGP) mechanisms. This work highlights the most recent advances in the essential functions performed by bacterial phytohormones and their potential application in agricultural production.

6.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430314

RESUMO

Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein-protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs-MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9-may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Escuridão , Transcriptoma , Hormônios/metabolismo , Sacarose/metabolismo
7.
Front Microbiol ; 13: 886041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663903

RESUMO

Plant growth-promoting rhizobacteria are known to associate with several cereal crops. The rhizobacterium exerts its function by synthesizing diverse arrays of phytohormones, such as cytokinin (Ck). However, it is difficult to determine the plant growth promotion when a bacterium produces many different kinds of phytohormones. Therefore, to assess the involvement of Ck in growth promotion and activation of antioxidant and physiological systems, we set up this experiment. Wheat seeds (Triticum aestivum L.) were inoculated with Azospirillum brasilense RA-17 (which produces zeatin type Ck) and RA-18 (which failed to produce Ck). Results showed that seed inoculation with RA-17 significantly improved growth and yield-related parameters compared with RA-18. The activity of enzymes, proline contents, and endogenous hormonal levels in wheat kernels were improved considerably with RA-17 than with RA-18. Strain RA-17 enhanced grain assimilation more than strain RA-18 resulting in a higher crop yield. These results suggest that microbial Ck production may be necessary for stimulating plant growth promotion and activating antioxidant and physiological systems in wheat.

8.
J Exp Bot ; 73(14): 4867-4885, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35439821

RESUMO

Portulaca species can switch between C4 and crassulacean acid metabolism (CAM) depending on environmental conditions. However, the regulatory mechanisms behind this rare photosynthetic adaptation remain elusive. Using Portulaca oleracea as a model system, here we investigated the involvement of the circadian clock, plant hormones, and transcription factors in coordinating C4 and CAM gene expression. Free-running experiments in constant conditions suggested that C4 and CAM gene expression are intrinsically connected to the circadian clock. Detailed time-course, drought, and rewatering experiments revealed distinct time frames for CAM induction and reversion (days versus hours, respectively), which were accompanied by changes in abscisic acid (ABA) and cytokinin metabolism and signaling. Exogenous ABA and cytokinins were shown to promote and repress CAM expression in P. oleracea, respectively. Moreover, the drought-induced decline in C4 transcript levels was completely recovered upon cytokinin treatment. The ABA-regulated transcription factor genes HB7, NFYA7, NFYC9, TT8, and ARR12 were identified as likely candidate regulators of CAM induction following this approach, whereas NFYC4 and ARR9 were connected to C4 expression patterns. Therefore, we provide insights into the signaling events controlling C4-CAM transitions in response to water availability and over the day/night cycle, highlighting candidate genes for future functional studies in the context of facultative C4-CAM photosynthesis.


Assuntos
Portulaca , Ácido Abscísico , Dióxido de Carbono/metabolismo , Metabolismo Ácido das Crassuláceas , Citocininas , Fotossíntese/fisiologia , Portulaca/genética , Portulaca/metabolismo
9.
J Exp Bot ; 73(11): 3651-3670, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176760

RESUMO

Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.


Assuntos
Agaricales , Cacau , Solanum lycopersicum , Agaricales/genética , Cacau/genética , Parede Celular , Citocininas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Açúcares , Água
10.
Plants (Basel) ; 10(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961114

RESUMO

The use of plant growth regulators (PGRs) is widespread in commercial table grape vineyards. The synthetic cytokinin CPPU is a PGR that is extensively used to obtain higher quality grapes. However, the effect of CPPU on berry firmness is not clear. The current study investigated the effects of pre-anthesis applications (BBCH15 and BBCH55 stages) of CPPU on 'Thompson Seedless' berry firmness at harvest through a combination of cytological, morphological, and biochemical analyses. Ovaries in CPPU-treated plants presented morphological changes related to cell division and cell wall modification at the anthesis stage (BBCH65). Moreover, immunofluorescence analysis with monoclonal antibodies 2F4 and LM15 against pectin and xyloglucan demonstrated that CPPU treatment resulted in cell wall modifications at anthesis. These early changes have major repercussions regarding the hemicellulose and pectin cell wall composition of mature fruits, and are associated with increased calcium content and a higher berry firmness at harvest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA